Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 17006
Number of page(s) 9
Section Variable Amplitude Loading
Published online 02 December 2019
  1. D. Benasciutti, R. Tovo. Spectral methods for lifetime prediction under wide-band stationary random processes. Int J Fatigue, 27(8): 867–877 (2005) [CrossRef] [Google Scholar]
  2. D. Benasciutti, R. Tovo. Comparison of spectral methods for fatigue analysis of broadband Gaussian random processes. Probab Eng Mech, 21(4): 287–299 (2006) [CrossRef] [Google Scholar]
  3. D. Benasciutti. Some analytical expressions to measure the accuracy of the “equivalent von mises stress” in vibration multiaxial fatigue. J Sound Vib, 333(18): 4326–4340 (2014) [CrossRef] [Google Scholar]
  4. D. Benasciutti, F. Sherratt, A. Cristofori. Recent developments in frequency domain multi-axial fatigue analysis. Int J Fatigue, 91: 397–413 (2016) [CrossRef] [Google Scholar]
  5. D. Benasciutti, R. Tovo. Frequency-based analysis of random fatigue loads: Models, hypotheses, reality. Materialwiss Werkstofftech, 49(3): 345–367 (2018) [CrossRef] [Google Scholar]
  6. T. George. Development of a novel vibration-based fatigue testing methodology. Int J Fatigue, 26(5): 477–486 (2004) [CrossRef] [Google Scholar]
  7. C. Ghielmetti, R. Ghelichi, M. Guagliano, F. Ripamonti, S. Vezzù. Development of a fatigue test machine for high frequency applications. Procedia Engineering, 10: 2892–2897 (2011) [CrossRef] [Google Scholar]
  8. T. Łagoda, E. Macha, A. Niesłony. Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading. Fatigue Fract Eng Mater Struct, 28(4): 409–420 (2005) [Google Scholar]
  9. M. Česnik, J. Slavić, M. Boltežar. Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping. J Sound Vib, 331(24): 5370–5382 (2012) [CrossRef] [Google Scholar]
  10. N. Nguyen, M. Bacher-Höchst, C.M. Sonsino. A frequency domain approach for estimating multiaxial random fatigue life. Materialwiss Werkstofftech, 42(10): 904–908 (2011) [CrossRef] [Google Scholar]
  11. D. Zanellati, D. Benasciutti, R. Tovo. Vibration fatigue tests by tri-axis shaker: design of an innovative system for uncoupled bending/torsion loading. Proc Struct Integrity, 8: 92–101 (2018) [Google Scholar]
  12. D. Zanellati, D. Benasciutti, R. Tovo R. An innovative system for uncoupled bending/torsion tests by tri-axis shaker: numerical simulations and experimental results. MATEC Web of Conferences, 165: 16006 (2018) [Google Scholar]
  13. X. Pitoiset, A. Preumont. Spectral methods for multiaxial random fatigue analysis of metallic structures. Int J Fatigue 22(7): 541–550 (2000) [Google Scholar]
  14. A. Cristofori, D. Benasciutti, R. Tovo. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading. Int J Fatigue, 33(7): 887–899 (2011) [CrossRef] [Google Scholar]
  15. D. Benasciutti, D. Zanellati, A. Cristofori. The “Projection-by-Projection” (PbP) criterion for multiaxial random fatigue loadings: Guidelines to practical implementation. Frattura Integr Strutt, 13(47): 348–366 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.