Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 18001
Number of page(s) 9
Section Very High Cycle Fatigue
DOI https://doi.org/10.1051/matecconf/201930018001
Published online 02 December 2019
  1. M.-H. Evans, White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs), Tribol. Int. 28 3–22 (2012) [Google Scholar]
  2. M.-H. Evans, An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings, Mater. Sci. Technol. 32 1133–69 (2016) [Google Scholar]
  3. A. Greco, S. Sheng, J. Keller, A. Erdemir, Material wear and fatigue in wind turbine Systems, Wear 302 1583–91 (2012) [CrossRef] [Google Scholar]
  4. V. Šmeļova, A. Schwedt, L. Wang, W. Holweger, J. Mayer, Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF), Int. J. Fatigue 100 148–58 (2017) [CrossRef] [Google Scholar]
  5. Y.J. Li, M. Herbig, S. Goto, D. Raabe, Atomic scale characterization of white etching area and its adjacent matrix in a martensitic 100Cr6 bearing steel, Mater. Charact. 123 349–53 (2017) [CrossRef] [Google Scholar]
  6. H.K. Danielsen, F.G. Guzmán, K.V. Dahl, Y.J. Li, J. Wu, G. Jacobs, G. Burghardt, S. Fæster, H. Alimadadi, S. Goto, D. Raabe, R. Petrov, Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig, Wear 370-371 73–82 (2017) [CrossRef] [Google Scholar]
  7. O.H.E. West, A.M. Diederichs, H. Alimadadi, K.V. Dahl, M.A.J. Somers, Application of Complementary Techniques for Advanced Characterization of White Etching Cracks, Pract. Metallogr. 50 410–31 (2013) [CrossRef] [Google Scholar]
  8. F. Manieri, K. Stadler, G.E. Morales-Espejel, A. Kadiric, The origins of white etching cracks and their significance to rolling bearing failures, Int. J. Fatigue 120 107–33 (2019) [CrossRef] [Google Scholar]
  9. T. Sakai, Y. Sato, N. Oguma, Characteristic S-N properties of high-carbon-chromiumbearing steel under axial loading in long-life fatigue, Fatigue Fract. Eng. M. 25 765–73 (2002) [CrossRef] [Google Scholar]
  10. Y.-D. Li, L.-L. Zhang, Y.-H. Fei, X.-Y. Liu, M.-X. Li, On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime, Int. J. Fatigue 82 402–10 (2016) [CrossRef] [Google Scholar]
  11. D. Spriestersbach, E. Kerscher, The role of local plasticity during very high cycle fatigue crack initiation in high-strength steels, Int. J. Fatigue 111 93–100 (2018) [CrossRef] [Google Scholar]
  12. P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, E. Kerscher, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scr. Mater. 67 838–41 (2012) [CrossRef] [Google Scholar]
  13. P. Grad, Rissinitiierung und Rissausbreitung im VHCF-Bereich des hochfesten Stahls 100Cr6 (TU Kaiserslautern, Kaiserslautern, 2013) [Google Scholar]
  14. I.V. Papadopoulos, A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue 19 219–35 (1997) [CrossRef] [Google Scholar]
  15. I.V. Papadopoulos, Critical Plane Approaches in High-Cycle Fatigue: On the Definition of the Amplitude and Mean Value of the Shear Stress Acting on the Critical Plane, Fatigue Fract. Eng. M. 21 269–85 (1998) [CrossRef] [Google Scholar]
  16. K. Burkart, Überrollungslebensdauer des Wälzlagerstahls 100Cr6 in Abhängigkeit von nicht idealen Gefügeausbildungen unter besonderer Berücksichtigung der Karbidzeiligkeit (Universität Bremen, Bremen, 2009) [Google Scholar]
  17. H. Surborg, Einfluss von Grundölen und Additiven auf die Bildung von WEC in Wälzlagern (Shaker, Aachen, 2014) [Google Scholar]
  18. D.L. McDiarmid, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue Fract. Eng. M. 14 429–53 (1991) [CrossRef] [Google Scholar]
  19. T. Matake, An Explanation on Fatigue Limit under Combined Stress, Bulletin of JSME 20 257–63 (1977) [CrossRef] [Google Scholar]
  20. L. Susmel, P. Lazzarin, A bi-parametric Wohler curve for high cycle multiaxial fatigue assessment, Fatigue Fract. Eng. M. 25 63–78 (2002) [CrossRef] [Google Scholar]
  21. S. Averbeck, E. Kerscher, Critical plane analysis of multiaxial fatigue experiments leading to White Etching Crack formation, J. Phys.: Conf. Ser. 843 12028 (2017) [CrossRef] [Google Scholar]
  22. A. Gabelli, J. Lai, T. Lund, K. Rydén, I. Strandell, G.E. Morales-Espejel, The fatigue limit of bearing steels – Part II: Characterization for life rating standards, Int. J. Fatigue 38 169–80 (2012) [CrossRef] [Google Scholar]
  23. R. Pippan, The growth of short cracks under cyclic compression, Fatigue Fract. Eng. M. 9 319–28 (1987) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.