Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 16004
Number of page(s) 9
Section Strength Criteria
DOI https://doi.org/10.1051/matecconf/201930016004
Published online 02 December 2019
  1. A. Wöhler. On strength tests with iron and steel. Zeitschrift für Bauwesen, XX, 73-106 (1870). [Google Scholar]
  2. J. Papuga. A survey on evaluating the fatigue limit under multiaxial loading. Int. J. Fatigue, 33:153-165 (2011) [CrossRef] [Google Scholar]
  3. J.O. Smith. The effect of range of stress on the torsional fatigue strength of steel. University of Illinois Engineering Experiment Station, Bulletin series No. 316 (1939) [Google Scholar]
  4. J.O. Smith. The effect of range of stress on the fatigue strength of metals. University of Illinois Engineering Experiment Station, Bulletin series No. 334 (1942) [Google Scholar]
  5. J.A. Sauer, A study of fatigue phenomena under combined stress, In: Proceedings of the seventh international congress for applied mechanics p. 150-164 (1948) [Google Scholar]
  6. W.N. Findley. Combined-stress fatigue strength of 76S-T61 Aluminum alloy with superimposed mean stresses and corrections for yielding. NACA-TN-2924. NACA, Washington, (1953). [Google Scholar]
  7. W.T. Chodorowski, Fatigue strength in shear of an alloy steel, with particular reference to the effect of mean stress and directional properties, In: Proc. Int. Conf. Fatigue of Metals. London: I. Mech. Eng. p. 122–131 (1956) [Google Scholar]
  8. E. Haibach. FKM-Guideline: Analytical strength assessment of components in mechanical engineering (5th Rev Ed.), English version. Germany, Frankfurt/Main: Forschungskuratorium Maschinenebau (2003) [Google Scholar]
  9. W.N. Findley. Effects of extremes of hardness and mean stress on fatigue of AISI 4340 steel in bending and torsion. Journal of Engineering Materials and Technology, 111: 119-122 (1989). [CrossRef] [Google Scholar]
  10. H. Mayer. Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. International Journal of Fatigue, 70: 322-327 (2015). [CrossRef] [Google Scholar]
  11. P. Davoli; A. Bernasconi; M. Filippini; S. Foletti; I.V. Papadopoulos. Independence of the torsional fatigue limit upon a mean shear stress. Int. J. Fatigue 25: 471-480 (2003) [CrossRef] [Google Scholar]
  12. C. Froustey, S. Laserre. Multiaxial fatigue endurance of 30NCD16 steel. Int J Fatigue 11: 169-175 (1989) [CrossRef] [Google Scholar]
  13. ASTM E466-15, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International, West Conshohocken, PA (2015) [Google Scholar]
  14. W.N. Findley. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng. Ind. 81: 301–306 (1959) [CrossRef] [Google Scholar]
  15. J. Marin, Interpretation of fatigue strengths for combined stresses, In: Proceedings of international conference on fatigue of metals. London: Institution of Mechanical Engineers, p. 184-195 (1956) [Google Scholar]
  16. C. Froustey, Contribution à l’étude de la fatigue multiaxiale sous sollicitations périodiques ou aléatoires, Thèse de Doctorat, Institut National des Sciences Appliquées de Lyon, Lyon (1992) [Google Scholar]
  17. L. Pallarés-Santasmartas.; J. Albizuri; A. Avilés, A; R. Avilés. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals 8, 213 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.