Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 13001
Number of page(s) 9
Section Notch
Published online 02 December 2019
  1. D. Taylor, Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue, 21: 413–20 (1999) [Google Scholar]
  2. L. Susmel, D. Taylor, Two methods for predicting the multiaxial fatigue limits of sharp notches, Fatigue Fract Engng Mater Struct, 26: 821-33, (2003). [CrossRef] [Google Scholar]
  3. L. Susmel, A unifying approach to estimate the high‐cycle fatigue strength of notched components subjected to both uniaxial and multiaxial cyclic loadings, Fatigue Fract Engng Mater Struct, 27: 391-411 (2004). [CrossRef] [Google Scholar]
  4. L. Susmel, D. Taylor, A novel formulation of the Theory of Critical Distances to estimate Lifetime of Notched Components on the Medium-Cycle Fatigue Regime, Fatigue Fract Engng Mater Struct, 30: 567-81 (2007) [CrossRef] [Google Scholar]
  5. L. Susmel, D Taylor, Can the conventional high-cycle multiaxial fatigue criteria be re-interpreted in terms of the theory of critical distances?. SDHM, 2, 2: 91–108 (2006) [Google Scholar]
  6. T. D. Righiniotis, B. M. Imam, M. K. Chryssanthopoulos, Fatigue analysis of riveted railway bridge connections using the theory of critical distances, Engng Struct, 30, 10: 2707-15 (2008) [CrossRef] [Google Scholar]
  7. M. Benedetti, V. Fontanari, C. Santus, M. Bandini, Notch fatigue behaviour of shot peened high-strength aluminium alloys: Experiments and predictions using a critical distance method, Int J Fatigue, 32, 10: 1600-11 (2010) [CrossRef] [Google Scholar]
  8. L. Susmel, D. Taylor, An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime, ASME. J. Eng. Mater. Technol., 132, 2 (2010) [CrossRef] [Google Scholar]
  9. L. Susmel., Modified Wöhler curve method, theory of critical distances and Eurocode 3: A novel engineering procedure to predict the lifetime of steel welded joints subjected to both uniaxial and multiaxial fatigue loading, Int. J Fatigue, 30, 5: 888-907, (2008) [CrossRef] [Google Scholar]
  10. L. Susmel., The theory of critical distances: a review of its applications in fatigue, Eng Fract Mech, 75, 7: 1706-24 (2008) [CrossRef] [Google Scholar]
  11. L. Susmel, D. Taylor, The Modified Wöhler Curve Method applied along with the Theory of Critical Distances to estimate finite life of notched components subjected to complex multiaxial loading paths, Fatigue Fract Engng Mater Struct, 31, 12: 1047-64 (2008) [CrossRef] [Google Scholar]
  12. Y. Yamashita, Y. Ueda, H. Kuroki, M. Shinozaki, Fatigue life prediction of small notched Ti–6Al–4V specimens using critical distance, Engng Fract Mech, 77, 9, 1439-1453, (2010) [CrossRef] [Google Scholar]
  13. S. Capetta, R. Tovo, D. Taylor, P. Livieri, Numerical evaluation of fatigue strength on mechanical notched components under multiaxial loadings, Int. J Fatigue, 33, 5, 661-71, (2011) [CrossRef] [Google Scholar]
  14. J.F. Flavenot, N. Skalli, A critical depth criterion for the evaluation of long-life fatigue strength under multiaxial loading and a stress gradient, Biaxial and Multiaxial Fatigue, EGF3, p. 355–65 (1989) [Google Scholar]
  15. F.C. Castro, J.A. Araújo, N. Zouain, On the application of multiaxial high-cycle fatigue criteria using the theory of critical distances, Eng Fract Mech, 76, 4: 512-24, (2009). [Google Scholar]
  16. D. Socie., Multiaxial Fatigue Damage Models, J. Eng. Mater. Technol., 109, 4, 293–98 (1987). [Google Scholar]
  17. R. N. Smith, P. Watson, T.H. Topper, A stress-strain parameter for the fatigue of metals, J. Mater, 5, 4: 767–78, (1970) [Google Scholar]
  18. Fatemi A.; Socie D., A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading, Fatigue Fract Engng Mater Struct, 11, 3, 149–65, (1988) [Google Scholar]
  19. M. W. Brown, K. J. Miller., A theory for fatigue failure under multiaxial stress-strain conditions, Proc. Inst. Mech. Eng., 187, 1: 745–55, (1973) [Google Scholar]
  20. K. Dang Vang, Sur la résistance à la fatigue des mètaux, Sciences et Techniques de l’Armement, Mémorial de l’Artillerie Française, 1973, p. 3. [Google Scholar]
  21. L. Susmel, A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems, Int. J. Fatigue, 32, 11, 1875–1883, (2010) [CrossRef] [Google Scholar]
  22. E. N. Mamiya, J. A. Araujo, Fatigue limit under multiaxial loadings: on the definition of the equivalent shear stress, Mech Res Commun, 29, 141–51 (2002) [CrossRef] [Google Scholar]
  23. A. Rohatgi, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.