Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 12005
Number of page(s) 8
Section Non-Proportional Loading
DOI https://doi.org/10.1051/matecconf/201930012005
Published online 02 December 2019
  1. R. E. Little, Fatigue Stresses from Complex Loadings. Mach. Des. 38, 145–149. (1966) [Google Scholar]
  2. B. F. Langer, Design of Pressure Vessels Involving Fatigue. In: Pressure Vessel Engineering Technology, R.W. Nichols, Ed., Elsevier Publishing Co. Ltd., Amsterdam-London-New York, pp. 59–100. (1971) [Google Scholar]
  3. G. Li, S. Datta, A. Chattopadhyay, N. Iyyer, N. Phan, An online-offline prognosis model for fatigue life prediction under biaxial cyclic loading with overloads. Fatigue Fract. Eng. Mater. Struct. (2019) [Google Scholar]
  4. G. Z. Libertiny, Short Life Fatigue under Combined Stresses. J. Strain. Anal. 2, 91–95. (1967) [CrossRef] [Google Scholar]
  5. S. Y. Zamrik, An Investigation of Strain Cycling Behavior of 7075-T6 Aluminum under Combined State of Strain. doi:NASA CR-72843 (1972) [Google Scholar]
  6. W. N. Findley, P. N. Mathur, E. Szezepanski, A. O. Temel Energyversus Stress Theories for Combined Stress--A Fatigue Experiment using a Rotating Disk. J. Basic Eng. A.S.M.E, 83, 10–14. (1961) [CrossRef] [Google Scholar]
  7. B. N. Leis, An Energy-Based Fatigue and Creep-Fatigue Damage Parameter. J. Press. Vessel Technol. A.S.M.E. 99, 524–533. (1977) [CrossRef] [Google Scholar]
  8. S. Kruch, P. Prigent, J. L. Chaboche, A fracture mechanics based fatigue-creep-environment crack growth model for high temperature. Int. J. Press. Vessel. 59, 141–148. (1994) [CrossRef] [Google Scholar]
  9. D. Socie, Multiaxial Fatigue Damage Models. J. Eng. Mater. Technol. 109, 293–298. (1987) [CrossRef] [Google Scholar]
  10. G. Glinka, G. Shen, A. Plumtree, Multiaxial Fatigue Strain Energy Density Parameter Related to the Critical Fracture Plane. Fatigue Fract. Eng. Mater. Struct. 18, 37–46. (1995) [CrossRef] [Google Scholar]
  11. K. N. Smith, P. Watson, T. Topper, Stress-Strain Function for the Fatigue of Metals. J. Mater. 5, 767–778. (1970) [Google Scholar]
  12. C. C. Chu, F. A. Conle, J. J. Bonnen, Multiaxial Stress-Strain Modelling and Fatigue Life Prediction of SAE Axle Shafts. Adv. Multiaxial Fatigue. {ASTM} {STP} 1191 37–54. (1993) [CrossRef] [Google Scholar]
  13. K. S. Kim, K. M. Nam, G. J. Kwak, S. M. Hwang, A fatigue life model for 5% chrome work roll steel under multiaxial loading. Int. J. Fatigue. 26, 683–689. (2004) [CrossRef] [Google Scholar]
  14. A. Carpinteri, A. Spagnoli, Multiaxial high-cycle fatigue criterion for hard metals. Int. J. Fatigue. 23, 135–145. (2001) [CrossRef] [Google Scholar]
  15. A. Fatemi, N. Shamsaei, Multiaxial fatigue: An overview and some approximation models for life estimation. Int. J. Fatigue. 33(8), pp. 948-958. (2011) [CrossRef] [Google Scholar]
  16. J.A. Araújo, A. Carpinteri, C. Ronchei, A. Spagnoli, S. Vantadori, An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C-S (Carpinteri-Spagnoli) criterion. Fatigue Fract. Eng. Mater. Struct. 37(7), pp. 764-771. (2014) [CrossRef] [Google Scholar]
  17. A. Carpinteri, C. Ronchei, A. Spagnoli, S. Vantadori, Lifetime estimation in the low / medium-cycle regime using the Carpinteri – Spagnoli multiaxial fatigue criterion. Theor. Appl. Fract. Mech. 73, 120–127. (2014) [CrossRef] [Google Scholar]
  18. Y. Liu, S. Mahadevan, Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue. 27, 790–800. (2005) [CrossRef] [Google Scholar]
  19. Y. Liu, S. Mahadevan, Strain-based multiaxial fatigue damage modelling. Fatigue Fract. Eng. Mater. Struct. 28, 1177–1189. (2005) [CrossRef] [Google Scholar]
  20. M. V. Borodii, V. A. Strizhalo, Analysis of the experimental data on a low cycle fatigue under nonproportional straining. Int. J. Fatigue. 22, 275–282. (2000) [CrossRef] [Google Scholar]
  21. H. Wei, Y. Liu, A critical plane-energy model for multiaxial fatigue life prediction. Fatigue Fract. Eng. Mater. Struct. 40(12), pp. 1973-1983. (2017) [CrossRef] [Google Scholar]
  22. T. Łagoda, E. Macha, A. Niesłony, Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading. Fatigue Fract. Eng. Mater. Struct. 28, 409–420. (2005) [CrossRef] [Google Scholar]
  23. X. Pitoiset, I. Rychlik, A. Preumont, Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations. Fatigue Fract. Eng. Mater. Struct. 24, 715–727. (2001) [CrossRef] [Google Scholar]
  24. A. Carpinteri, A. Spagnoli, S. Vantadori, A multiaxial fatigue criterion for random loading. Fatigue Fract. Eng. Mater. Struct. 26(6), pp. 515-522. (2003) [CrossRef] [Google Scholar]
  25. T. Zhao, Y. Jiang, Fatigue of 7075-T651 aluminum alloy. Int. J. Fatigue. 30(5), pp. 834-849. (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.