Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 12002
Number of page(s) 8
Section Non-Proportional Loading
Published online 02 December 2019
  1. Callister, W.D., Rethwisch, D.G. (2010). Materials Science and Engineering: An Introduction, 8th Edition, Wiley. [Google Scholar]
  2. ASTM International. (2008). Strain-Controlled Axial-Torsional Fatigue Testing with Thin Walled Tubular Specimens, pp. 1–8, Doi: 10.1520/E2207-08.2. [Google Scholar]
  3. Li, J., Zhang, Z. ping., Sun, Q., Li, C. wang., Qiao, Y. jiang. (2009). A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings, Int. J. Fatigue, 31(4), pp. 776–81, Doi: 10.1016/j.ijfatigue.2008.03.008. [CrossRef] [Google Scholar]
  4. Fatemi, A., Socie, D.F. (1988). Critical Plane Approach To Multiaxial Fatigue Damage Including Out-of-Phase Loading., Fatigue Fract. Eng. Mater. Struct., 11(3), pp. 149–65, Doi: 10.1111/j.1460-2695.1988.tb01169.x. [Google Scholar]
  5. Gao, Z., Zhao, T., Wang, X., Jiang, Y. (2009). Multiaxial Fatigue of 16MnR Steel, J. Press. Vessel Technol., 131(2), pp. 021403, Doi: 10.1115/1.3008041. [CrossRef] [Google Scholar]
  6. Itoh, T., Yang, T. (2011). Material dependence of multiaxial low cycle fatigue lives under non-proportional loading, Int. J. Fatigue, 33(8), pp. 1025–31. [CrossRef] [Google Scholar]
  7. Sakane, M., Itoh, T., Kida, S., Ohnami, M., Socie, D. (1997). Dislocation structure and non-proportional hardening of type 304 stainless steel, Fatigue Fract. Eng. Mater. Struct., 20(10), pp. 1375–86. [Google Scholar]
  8. Shamsaei, N., Fatemi, A. (2010). Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions, Mater. Sci. Eng. A, 527(12), pp. 3015–24, Doi: 10.1016/j.msea.2010.01.056. [CrossRef] [Google Scholar]
  9. Mazánová, V., Škorík, V., Kruml, T., Polák, J. (2017). Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel, Int. J. Fatigue, 100, pp. 466–76, Doi: 10.1016/j.ijfatigue.2016.11.018. [CrossRef] [Google Scholar]
  10. Facheris, G., Janssens, K.G.F., Foletti, S. (2014). Multiaxial fatigue behavior of AISI 316L subjected to strain-controlled and ratcheting paths, Int. J. Fatigue, 68, pp. 195–208, Doi: 10.1016/j.ijfatigue.2014.05.003. [CrossRef] [Google Scholar]
  11. Gallo, P., Stefano, B., Morishita, T., Itoh, T., Berto, F. (2017). Analysis of multiaxial low cycle fatigue of notched specimens for type 316L stainless steel under non-proportional loading, Theor. Appl. Fract. Mech., 89, pp. 79–89. [CrossRef] [Google Scholar]
  12. Morishita, T., Itoh, T., Bao, Z.L. (2015). Fatigue Life of Type 316 Stainless Steel under Wide Ranged Multiaxial Loading, Procedia Eng., 130, pp. 1730–41, Doi: 10.1016/j.proeng.2015.12.198. [CrossRef] [Google Scholar]
  13. Morishita, T., Itoh, T., Bao, Z. (2016). Multiaxial fatigue strength of type 316 stainless steel under push-pull, Reversed torsion, Cyclic inner and outer pressure loading, Int. J. Press. Vessel. Pip., 139–140, pp. 228–36, Doi: 10.1016/j.ijpvp.2016.02.024. [CrossRef] [Google Scholar]
  14. De-guang, S., De-junt, W. (1998). A new multiaxial fatigue damage model based on the critical plane approach, 20(3), pp. 241–5. [Google Scholar]
  15. Yang, J.R., Tsai, M.C., Du, J.S., Lin, Y.J. (1999). Phase transformations in AISI 410 stainless steel, Japan Inst. Met. Proceedings, Vol 12, (Jimic-3), Pts 1 2, 332, pp. 1605–8. [Google Scholar]
  16. Hejripour, F., Aidun, D.K. (2017). Consumable selection for arc welding between Stainless Steel 410 and Inconel 718, J. Mater. Process. Technol., 245, pp. 287–99. [CrossRef] [Google Scholar]
  17. Vamsi Krishna, B., Bandyopadhyay, A. (2009). Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENSTM), Mater. Des., 30(5), pp. 1490–6, Doi: 10.1016/j.matdes.2008.08.003. [CrossRef] [Google Scholar]
  18. Poblano-salas, C.A., Barceinas-sanchez, J.D.O., Sanchez-jimenez, J.C. (2011). Failure analysis of an AISI 410 stainless steel airfoil in a steam turbine, 18, pp. 68–74, Doi: 10.1016/j.engfailanal.2010.08.006. [Google Scholar]
  19. Albinmousa, J., Jahed, H., Lambert, S. (2011). Cyclic behaviour of wrought magnesium alloy under multiaxial load, Int. J. Fatigue, 33(8), pp. 1127–39. [CrossRef] [Google Scholar]
  20. Sun, G.Q., Shang, D.G., Bao, M. (2010). Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials, Int. J. Fatigue, 32(7), pp. 1108–15, Doi: 10.1016/j.ijfatigue.2009.12.007. [CrossRef] [Google Scholar]
  21. Fatemi, A., Socie, D.F. (1988). A Critical Plane Approach To Multiaxial Fatigue Damage Including Out-of-Phase Loading, Fatigue Fract. Eng. Mater. Struct., 11(3), pp. 149–65, Doi: 10.1111/j.1460-2695.1988.tb01169.x. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.