Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 11009
Number of page(s) 8
Section Mixed-Mode
Published online 02 December 2019
  1. J.R. Yates, M. Zanganeh, R.A. Tomlinson, M.W. Brown, F.A. DiazGarrido, Crack paths under mixed mode loading, Engineering Fracture Mechanics, 75, 3-4, 319-330 (2008). [CrossRef] [Google Scholar]
  2. M. Mokhtarishirazabad, P. Lopez-Crespo, B. Moreno, A. Lopez-Moreno, M. Zanganeh, Optical and analytical investigation of overloads in biaxial fatigue cracks, International Journal of Fatigue, 100, 2, 583-590 (2017). [CrossRef] [Google Scholar]
  3. Y. Izumi, T. Sakagami, K. Yasumura, D. Shiozawa, A new approach for evaluating stress intensity factor based on thermoelastic stress analysis, APCFS/SIF, 47-51 (2014). [Google Scholar]
  4. J.S. Short, D.W. Hoeppner, A Global/local theory of fatigue crack propagation, Engineering Fracture mechanics, 33, 2, 175-184 (1989). [CrossRef] [Google Scholar]
  5. P.C. Paris, M.P. Gomez, W.E. Anderson, A rational analytic theory of fatigue, The Trend in Engineering, 13, 9–14 (1961). [Google Scholar]
  6. A. Chudnovsky, A. Moet, Thermodynamics of translational crack layer propagation, J. Materials Science, 20, 630–635 (1985). [CrossRef] [Google Scholar]
  7. Yu.G. Matvienko, E.M. Morozov, Calculation of the energy J-integral for bodies with notches and cracks, International Journal of Fracture, 125, 249-261 (2004). [CrossRef] [Google Scholar]
  8. V. Shlyannikov, A. Tumanov, A. Zakharov, A. Gerasimenko, Surface flaws behavior under tension, bending and biaxial cyclic loading, International Journal of Fatigue, 92, 2, 557-576 (2016). [CrossRef] [Google Scholar]
  9. G. Meneghetti, M. Ricotta, Evaluating the heat energy dissipated in a small volume surrounding the tip of a fatigue crack, International Journal of Fatigue, 92, 2, 605-615 (2016). [CrossRef] [Google Scholar]
  10. A. Risitano, G. Risitano, Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters, International Journal of Fatigue, 48, 214-222 (2013). [CrossRef] [Google Scholar]
  11. C. Pradere, M. Joanicot, J-C. Batsale, J. Toutain, C. Gourdon, Processing of temperature field in chemical microreactors with infrared thermography, QIRT Journal, 3, 117-135 (2006). [CrossRef] [Google Scholar]
  12. P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, A thermodynamic internal variable model for the partitional of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids, 48, 581-607 (2000). [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Oliferuk, M. Maj, B. Raniecki, Experimental Analysis of Energy Storage Rate Components during Tensile Deformation of Polycrystals, Materials Science and Engineering, 374, 77-81, (2004). [CrossRef] [Google Scholar]
  14. A. Izyumova, O. Plekhov, Calculation of the energy J-integral in plastic zone ahead of a crack tip by infrared scanning, FFEMS, 37, 1330–1337 (2014). [Google Scholar]
  15. W.S. Farren, G.I. Taylor, The heat developed during plastic extension of metals, Proc. Royal. Soc. of London. Ser., 107, 422-451 (1925). [Google Scholar]
  16. А. Vshivkov, A. Iziumova, U. Bar, O. Plekhov, Experimental study of heat dissipation at the crack tip during fatigue crack propagation, Fracture and Structural Integrity, 35, 131-137 (2016). [Google Scholar]
  17. K.N. Raju, An energy balance criterion for crack growth under fatigue loading from considerations of energy of plastic deformation, International Journal of Fracture Mechanics, 8(1), 1-14 (1972). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.