Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 10001
Number of page(s) 8
Section Microstructure Simulation
DOI https://doi.org/10.1051/matecconf/201930010001
Published online 02 December 2019
  1. D. J. Fonseca, M. Sequera, On MEMS reliability and failure mechanisms. Int. J. Qual. Stat. Reliab. 2011 (2011). [CrossRef] [Google Scholar]
  2. M. Tariq Jan et al., Reliability and fatigue analysis in cantilever-based MEMS devices operating in harsh environments. J. Qual. Reliab. Eng. 2014 (2014). [CrossRef] [Google Scholar]
  3. T. Connolley, P. E. Mchugh, M. Bruzzi, A review of deformation and fatigue of metals at small size scales. Fatigue Fract. Eng. Mater. Struct. 28, 1119–1152 (2005). [CrossRef] [Google Scholar]
  4. C. P. Przybyla, D. L. McDowell, Microstructure-sensitive extreme value probabilities for high cycle fatigue of Nibase superalloy IN100. Int. J. Plast. 26, 372–394 (2010). [CrossRef] [Google Scholar]
  5. J. Aktaa, J. T. Reszat, M. Walter, K. Bade, K. J. Hemker, High cycle fatigue and fracture behavior of LIGA Nickel. Scr. Mater. 52, 1217–1221 (2005). [CrossRef] [Google Scholar]
  6. C. Y. Dai, B. Zhang, J. Xu, G. P. Zhang, On size effects on fatigue properties of metal foils at micrometer scales. Mater. Sci. Eng. A. 575, 217–222 (2013). [CrossRef] [Google Scholar]
  7. A. Soma, G. De Pasquale, MEMS mechanical fatigue: Experimental results on gold microbeams. J. Microelectromechanical Syst. 18, 828–835 (2009). [CrossRef] [Google Scholar]
  8. S. M. Allameh, J. Lou, F. Kavishe, T. Buchheit, W. O. Soboyejo, An investigation of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng. A. 371, 256–266 (2004). [CrossRef] [Google Scholar]
  9. D. L. McDowell, F. P. E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue. 32, 1521–1542 (2010). [CrossRef] [Google Scholar]
  10. G. M. Castelluccio, D. L. McDowell, A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals. Int. J. Damage Mech. 23, 791–818 (2014). [CrossRef] [Google Scholar]
  11. K. Kirane, S. Ghosh, M. Groeber, A. Bhattacharjee, Grain level dwell fatigue crack nucleation model for Ti alloys using crystal plasticity finite element analysis. J. Eng. Mater. Technol. 131, 21003 (2009). [CrossRef] [Google Scholar]
  12. C. A. Sweeney et al., The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids. 61, 1224–1240 (2013). [CrossRef] [Google Scholar]
  13. A. Rovinelli et al., Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework. Model. Simul. Mater. Sci. Eng. 25, 45010 (2017). [CrossRef] [Google Scholar]
  14. A. Fatemi, D. F. Socie, A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11, 149–165 (1988). [Google Scholar]
  15. K. O. Findley, A. Saxena, Low cycle fatigue in Rene 88DT at 650 C: crack nucleation mechanisms and modeling. Metall. Mater. Trans. A. 37, 1469–1475 (2006). [CrossRef] [Google Scholar]
  16. G. M. Castelluccio, D. L. McDowell, Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater. Sci. Eng. A. 598, 34–55 (2014). [CrossRef] [Google Scholar]
  17. E. K. Baumert, O. N. Pierron, Fatigue degradation properties of LIGA Ni films using kilohertz microresonators. J. Microelectromechanical Syst. 22, 16–25 (2013). [CrossRef] [Google Scholar]
  18. F. Sadeghi-Tohidi, O. N. Pierron, Towards prediction of the fatigue life of Ni microbeams under extreme stress gradients. Extrem. Mech. Lett. 9, 97–107 (2016). [CrossRef] [Google Scholar]
  19. M. A. Groeber, M. A. Jackson, DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 5 (2014). [CrossRef] [Google Scholar]
  20. B. Chen, J. Jiang, F. P. E. Dunne, Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals. J. Mech. Phys. Solids. 106, 15–33 (2017). [Google Scholar]
  21. G. M. Castelluccio, D. L. McDowell, Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals. Mater. Sci. Eng. A. 639, 626–639 (2015). [CrossRef] [Google Scholar]
  22. A. Barrios, S. Gupta, G. M. Castelluccio, O. N. Pierron, Quantitative in situ SEM high cycle fatigue: The critical role of oxygen on nanoscale-void-controlled nucleation and propagation of small cracks in Ni microbeams. Nano Lett. 18, 2595–2602 (2018). [CrossRef] [Google Scholar]
  23. G. M. Castelluccio, D. L. McDowell, Mesoscale cyclic crystal plasticity with dislocation substructures. Int. J. Plast. 98, 1–26 (2017). [CrossRef] [Google Scholar]
  24. U. Kocks, Argon AS, Ashby M. Thermodynamics Kinet. Slip, 74 (1975). [Google Scholar]
  25. U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003). [CrossRef] [Google Scholar]
  26. D. Kuhlmann-Wilsdorf, “A new theory of work hardening in crystals” (1962). [Google Scholar]
  27. M. Sauzay, L. P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog. Mater. Sci. 56, 725–784 (2011). [CrossRef] [Google Scholar]
  28. L. P. Kubin et al., Dislocation Microstructures and Plastic Flow: A 3D Simulation, Solid State Phenom. (1992), vol. 23, pp. 455–472. [CrossRef] [Google Scholar]
  29. M. Verdier, M. Fivel, I. Groma, Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications. Model. Simul. Mater. Sci. Eng. 6, 755 (1998). [CrossRef] [Google Scholar]
  30. C. Zhou, S. B. Biner, R. LeSar, Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater. 58, 1565–1577 (2010). [CrossRef] [Google Scholar]
  31. ABAQUS. FEM Software V6.9, ABAQUS. FEM Software V6. 9 (2009). [Google Scholar]
  32. J. S. Cantó, S. Winwood, K. Rhodes, S. Birosca, A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloy. Mater. Sci. Eng. A. 718, 19–32 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.