Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 10002
Number of page(s) 8
Section Microstructure Simulation
Published online 02 December 2019
  1. M. Vincent, C. Nadot-Martin, Y Nadot, A. Dragon. Fatigue from defect under multiaxial loading: Defect Stress Gradient (DSG) approach using ellipsoidal Equivalent Inclusion Method. Int. J. Fatigue, 59: 176–87 (2014). [CrossRef] [Google Scholar]
  2. M. Cerullo, V. Tvergaard. Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing. Int. J. Struct. Integr., 6: 124–41 (2015). [CrossRef] [Google Scholar]
  3. B. Alfredsson, E. Olsson. Multi-axial fatigue initiation at inclusions and subsequent crack growth in a bainitic high strength roller bearing steel at uniaxial experiments. Int. J. Fatigue, 41: 130–9 (2012). [CrossRef] [Google Scholar]
  4. Y. Murakami. Metal Fatigue, Effects of Small Defects and Nonmetallic Inclusions. Elsevier Science, Oxford, (2002). [Google Scholar]
  5. WN. Findley. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind, Providence, R.I. : Division of Engineering, Brown University, (1959). [Google Scholar]
  6. T. Billaudeau, Y. Nadot, G. Bezine. Multiaxial fatigue limit for defective materials: mechanisms and experiments. Acta Mater., 52: 3911–20 (2004). [CrossRef] [Google Scholar]
  7. JD. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London, Mathematical and Physical Sciences, 241: 376-396 (2007). [Google Scholar]
  8. H. Desimone, A. Bernasconi, S. Beretta. On the application of Dang Van criterion to rolling contact fatigue. Wear, 260: 567–72 (2006). [CrossRef] [Google Scholar]
  9. K. Dang-Van. Macro-Micro Approach in High-Cycle Multiaxial Fatigue. Advances in Multiaxial Fatigue (2009). [Google Scholar]
  10. T. Sakai, R. Fincato, S. Tsutsumi, M. Sano, DS. Paolino, T. Miyoshi, N. Oguma, A. Nakagawa. FEM analyses of stress distributions around inclusions at interior crack initiation site in very high cycle fatigue, In: proceedings of VHCF-7, Dresden, Germany (2017). [Google Scholar]
  11. R. Asaro, V. Lubarda. Mechanics of solids and materials. Cambridge, England (2006). [CrossRef] [Google Scholar]
  12. D. Peirce, RJ. Asaro, A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metall., 31: 1951–76 (1983). [CrossRef] [Google Scholar]
  13. RJ. Asaro. Crystal Plasticity. J. Appl. Mech., 50: 921 (1983). [CrossRef] [Google Scholar]
  14. DD. Tjahjanto, S. Turteltaub, ASJ. Suiker, S. van der Zwaag. Modelling of the effects of grain orientation on transformation-induced plasticity in multiphase carbon steels. Model. Simul. Mater. Sci. Eng., 14: 617–36 (2006). [CrossRef] [Google Scholar]
  15. GJ. Schmitz, U. Prahl. Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform. Wiley-VCH (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.