Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 05001
Number of page(s) 9
Section Composite Materials
DOI https://doi.org/10.1051/matecconf/201930005001
Published online 02 December 2019
  1. L. Tavazzi, The excellence of the plastics supply chain in relaunching manufacturing in italy and europe. The European House, Ambrosetti, (2013) [Google Scholar]
  2. F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. in Mat. Sci., 83: pp. 536-573 (2016) [CrossRef] [Google Scholar]
  3. R. Popli and L. Mandelkern, Influence of structural and morphological factors on the mechanical properties of the polyethylenes. J. of Polym. Sci. Part B: Polymer Physics, 25: pp. 441-483 (1987) [CrossRef] [Google Scholar]
  4. Y. Ulcer, M. Cakmak, J. Miao, and C.M. Hsiung, Structural gradients developed in injection-molded syndiotactic polystyrene (sPS). J. of App. Polym. Sci., 60: pp. 669-691 (1996) [CrossRef] [Google Scholar]
  5. H. Zhou and G.L. Wilkes, Orientation-dependent mechanical properties and deformation morphologies for uniaxially melt-extruded high-density polyethylene films having an initial stacked lamellar texture. J. of Mat. Sci., 33: pp. 287-303 (1998) [CrossRef] [Google Scholar]
  6. F. Addiego, A. Dahoun, C. G’Sell, J.-M. Hiver, and O. Godard, Effect of microstructure on crazing onset in polyethylene under tension. Polym. Eng. & Sci., 49: pp. 1198-1205 (2009) [CrossRef] [Google Scholar]
  7. H.E.H. Meijer and L.E. Govaert, Mechanical performance of polymer systems: The relation between structure and properties. Prog. in Polym. Sci., 30: pp. 915-938 (2005) [CrossRef] [Google Scholar]
  8. A.N. Karasev, I.N. Andreyeva, N.M. Domareva, K.I. Kosmatykh, M.G. Karaseva, and N.A. Domnicheva, Relationship between the mechanical behaviour and molecular weight distribution of high density polyethylene. Polym. Sci. U.S.S.R., 12: pp. 1275-1288 (1970) [CrossRef] [Google Scholar]
  9. M. Hiroyuki, O. Masaki, and K. Kikuo, Effects of strain rate and relaxation rate on elastic modulus of semi-crystalline polymer. Jap. Soc. for Comp. Meth. in Eng., 7: p. 6 (2008) [Google Scholar]
  10. S. Lampman, Characterization and Failure Analysis of Plastics, ASM International (2003) [Google Scholar]
  11. B.A.G. Schrauwen, Deformation and Failure of Semi-crystalline Polymer Systems: Influence of Micro and Molecular Structure, Doctoral Thesis, Eindhoven University of Technology (2003) [Google Scholar]
  12. K. Chen, G. Kang, F. Lu, and H. Jiang, Uniaxial cyclic deformation and internal heat production of ultra-high molecular weight polyethylene. J. of Polym. Reser., 22: p. 217 (2015) [CrossRef] [Google Scholar]
  13. A. Berrehili, S. Castagnet, and Y. Nadot, Multiaxial fatigue criterion for a high-density polyethylene thermoplastic. Fat. & Frac. of Eng. Mat. & Struct., 33: pp. 345-357 (2010) [CrossRef] [Google Scholar]
  14. ASTM E2207-15, Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens. ASTM International (2017) [Google Scholar]
  15. P.E. Bretz, R.W. Hertzberg, and J.A. Manson, Mechanisms of fatigue damage and fracture in semi-crystalline polymers. Polym., 22: pp. 1272-1278 (1981) [CrossRef] [Google Scholar]
  16. J.A. Sauer and G.C. Richardson, Fatigue of polymers. Int. J. of Fract., 16: pp. 499-532 (1980) [CrossRef] [Google Scholar]
  17. A. Pawlak, A. Galeski, and A. Rozanski, Cavitation during deformation of semicrystalline polymers. Prog. in Polym. Sci., 39: pp. 921-958 (2014) [CrossRef] [Google Scholar]
  18. A. Fatemi and N. Shamsaei, Multiaxial fatigue: An overview and some approximation models for life estimation. Int. J. of Fat., 33: pp. 948-958 (2011) [CrossRef] [Google Scholar]
  19. N.R. Gates, Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading, Doctoral Thesis, University of Toledo (2016) [Google Scholar]
  20. A. Fatemi and D.F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading. Fat. & Fract. of Eng. Mat. & Struct., 11: pp. 149-165 (1988) [CrossRef] [Google Scholar]
  21. N.R. Gates and A. Fatemi, On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. of Fat., 100: pp. 322-336 (2017) [CrossRef] [Google Scholar]
  22. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, John Wiley & Sons (2000) [Google Scholar]
  23. R.E. Peterson, Stress Concentration Factors. John Wiley and Sons, New York (1974) [Google Scholar]
  24. S. Mortazavian and A. Fatemi, Effects of mean stress and stress concentration on fatigue behavior of short fiber reinforced polymer composites. Fat. & Fract. of Eng. Mat. & Struct., 39: pp. 149-166 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.