Open Access
Issue
MATEC Web Conf.
Volume 290, 2019
9th International Conference on Manufacturing Science and Education – MSE 2019 “Trends in New Industrial Revolution”
Article Number 04009
Number of page(s) 9
Section CAD-CAM and Virtual Engineering
DOI https://doi.org/10.1051/matecconf/201929004009
Published online 21 August 2019
  1. S. Eidelman, W. Grossmann, I. Lottati, Review of propulsion applications and numerical simulations of the pulsed detonation engine concept. Journal of Propulsion and Power, vol.7, p.857–865 (1991) [CrossRef] [Google Scholar]
  2. F. Ma, J. Choi, V. Yang, Thrust Chamber Dynamics and Propulsive Performance of Single-Tube Pulse Detonation Engines, In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA (2004) [Google Scholar]
  3. M. Hanafi Azami, M. Savill, Pulse Detonation Assessment for Alternative Fuels, Energies, 10, 369, doi: 10.3390/en10030369 (2017) [CrossRef] [Google Scholar]
  4. C. Li, K. Kailasanath, A Numerical Study of Reactive Flows in Pulse Detonation Engines. In Proceedings of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, UT, USA (2011) [Google Scholar]
  5. J.-M Li, C.J. Teo, K.S. Lim, C.S. Wen, B.C. Khoo, Deflagration to Detonation Transition by Hybrid Obstacles in Pulse Detonation Engines. Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference AIAA, San Jose, CA, USA (2013) [Google Scholar]
  6. T.E. Hutchins, M. Metghalchi, Energy and Exergy Analyses of the Pulse Detonation Engine. Journal of Engineering Gas Turbines and Power, vol. 125, issue 4, 1075 (2003) [CrossRef] [Google Scholar]
  7. T. Kaemming, Integrated Vehicle Comparison of Turbo-Ramjet Engine and Pulsed Detonation Engine. Journal of Engineering Gas Turbines and Power, 125, 257–262 (2003) [CrossRef] [Google Scholar]
  8. H.B. Ebrahimi, C.L. Merkle, Numerical Simulation of a Pulse Detonation Engine with Hydrogen Fuels. Journal of Propulsion and Power, vol.18, p.1042–1048 (2002) [CrossRef] [Google Scholar]
  9. K. Kailasanath, A review of research on pulse detonation engines. Report, Naval Research Laboratory. Report No (1999), available at https://wwwproxy.iwr.uni-heidelberg.de/groups/reaflow/user/icders99/program/ms_pde/241.pdf [Google Scholar]
  10. V. Prisacariu, C. Rotaru, I. Cîrciu, M. Niculescu, Consideration regarding pulse detonation engine, International Scientific Conference on Aeronautics Automotive and Railway Engineering and Technologies - BulTrans (2018) Sozopol, MATEC Web Conf, art. 01001, vol 234/2018, doi: https://doi.org/10.1051/matecconf/201823401001 [Google Scholar]
  11. D. Musielak, Pulse detonation engine options, available at https://www.slideshare.net/Musielak/pde-propulsion-options-35968274 [Google Scholar]
  12. Google Patents, available at https://patents.google.com, accessed at 27.02.2019. [Google Scholar]
  13. G.M. Blanco, Numerical Modelling of Pressure Rise Combustion for Reducing Emissions of Future Civil Aircraft; Cranfield University: UK (2014) [Google Scholar]
  14. W.H. Heiser, D.T. Pratt, Thermodynamic Cycle Analysis of Pulse Detonation Engines. Journal of Propulsion and Power, 18 (2002) [Google Scholar]
  15. K. Kailasanath, Review of Propulsion Application of Detonation Waves, AIAA Journal. 2000, vol.38, 1698–1708. no.9, (2000) [CrossRef] [Google Scholar]
  16. ANSYS Fluent Tutorial Guide, Ansys 17, 724-746-3304 (2015) available at http://dl.racfd.com/ANSYS-Fluent-Tutorial-Guide_r170.pdf [Google Scholar]
  17. T. Nakamura, Computational analysis of Zel’dovich-Von Neumann-Doering (ZND) detonation, may 2010, available at https://pdfs.semanticscholar.org/9537/c130baa0712e24223940947415bcf23ef2b2.pdf [Google Scholar]
  18. T. R. Meyer, J. L. Hoke and M. S. Brown, Experimental study of deflagration-to-detonation enhancement techniques in a h2/air pulsed-detonation engine, report Air Force Research Laboratory, Propulsion Directorate, Wright Patterson, AIAA-2002-3720, 11 (2002), available at https://apps.dtic.mil/dtic/tr/fulltext/u2/a454346.pdf [Google Scholar]
  19. T. New, P. Panicker, F. Lu, & H. Tsai, Experimental investigations on DDT enhancements by Schelkin spirals in a PDE. In 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006), p. 552, available at http://arc.uta.edu/publications/cp_files/aiaa-2006-552.pdf [Google Scholar]
  20. A.K. Hayashi, H. Adachi, T. Mitani, and H. Sato, DDT Reduction by Perforated Plates in H2/O2Mixture, 21st ICDERS Conference, Poitiers, France, July 23-27, (2007), available at http://www.icders.org/ICDERS2007/PapersICDERS2007/ICDERS2007-0254.pdf [Google Scholar]
  21. J.-L. Li, W. Fan, C.-J. Yan, H.-Y. Tu, and K.-C. Xie, Performance enhancement of a pulse detonation rocket engine, Proceedings of the Combustion Institute, vol. 33, no. 2, 2243–2254 (2011) [CrossRef] [Google Scholar]
  22. P. Srihari, G. Sai Krishna Prasad, Dr. B.V.N. Charyulu, D.N. Reddy, Experimental validation of effect of equivalence ratio on detonation characteristics of propane/oxygen mixtures, International Journal of Recent advances in Mechanical Engineering (IJMECH) Vol.3, No.3, (2014), p.33-42, available at https://wireilla.com/engg/ijmech/papers/3314ijmech03.pdf [CrossRef] [Google Scholar]
  23. F. Wildon, C. D. William, Detonation Theory and Experiments, Dover, New York (2000) [Google Scholar]
  24. K.K. Kuo, Principles of combustion, (2nd edition), J. Wiley, New Jersey (2005) [Google Scholar]
  25. C. Rotaru, C.G. Constantinescu, O. Ciuică, I. Cîrciu, M. Eduard, Mathematical model and CFD analysis of partially premixed combustion in a turbojet, Review of the Air Force Academy, no.2, vol. 32, p.83-92, (2016), DOI: 10.19062/1842-9238.2016.14.2.10 [CrossRef] [Google Scholar]
  26. M. Marini, Analysis of hypersonic compression ramp laminar flows under sharp leading edge conditions, Aerosp. Sci. Technol. 5, 257–271 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.