Open Access
MATEC Web Conf.
Volume 287, 2019
6th International BAPT Conference “Power Transmissions 2019”
Article Number 01014
Number of page(s) 8
Section Design, Analysis, Simulation and Optimization
Published online 14 August 2019
  1. M. Grebenstein, A. Albu-Schaeffer, S. Wolf et al.: The DLR hand arm system, 2011 IEEE Int. Conf. on Robotics and Automation: 3175-3182 (2011) [Google Scholar]
  2. P. Polygerinos, Z. Wang, C.J. Walsh: Soft robotic glove for combined assistance and at-home rehabilitation, Robotics and Autonomous Systems 73: 135-143 (2015) [CrossRef] [Google Scholar]
  3. HH. Schempf,, and DR. Yoerger: Study of Dominant Performance Characteristics in Robot Transmissions, ASME J. Mech. Des., 115 (3): 472-482 (1993) [CrossRef] [Google Scholar]
  4. A.J. Veale, and S.Q. Xie: Towards compliant and wearable robotic orthoses: a review of current and emerging actuator technologies, Med. Eng. Phys., 38 (4): 317-325 (2016) [CrossRef] [Google Scholar]
  5. N., Kashiri, N. Tsagarakis, et al.: An overview on principles for energy efficient robot locomotion, Frontiers Robotics AI, 5 (DEC): 129 (2018) [CrossRef] [Google Scholar]
  6. J. W. Sensinger, and J. H. Lipsey: Cycloid vs. harmonic drives for use in high ratio, single stage robotic transmissions, 2012 IEEE Int. Conf. on Robotics and Automation, MN: 4130-4135 (2012) [Google Scholar]
  7. P. Lopez Garcia, S. Crispel, D. Lefeber, et al.: Failure Mode end Effect Analysis (FMEA)-driven design of a planetary gearbox for active wearable robotics, 4th Int. Symposium on Wearable Robotics: 460 (2018) [Google Scholar]
  8. D. Torricelli, D. Lefeber, J.L. Pons, et al.: Human-like compliant locomotion: state of the art of robotic implementations, Bioinspiration & Biomimetics, 11: 051002 (2016) [CrossRef] [Google Scholar]
  9. T. Verstraten, B. Vanderborght, D. Lefeber, et al.: Modeling and design of geared DC motors for energy efficiency: Comparison between theory and experiments, Mechatronics, 30: 198-213 (2015). [CrossRef] [Google Scholar]
  10. J. W. Sensinger: Selecting motors for robots using biomimetic trajectories: optimum benchmarks, windings, and other considerations, 2010 IEEE Int. Conf. on Robotics and Automation, AL: 4175-4181 (2010) [Google Scholar]
  11. R. Alo, F. Bottiglione, G. Mantriota: An innovative design of artificial knee joint actuator with energy recovery capabilities, Mechanisms and Robotics, 8: 1310 (2014) [Google Scholar]
  12. D. Dong, B. Convens, P. Cherelle, et al.: The effects of variable mechanical parameters on peak power and energy consumption of ankle-foot prostheses at different speeds, Advanced Robotics 32-23: 1229-1440 (2018) [CrossRef] [Google Scholar]
  13. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, et al: Variable impedance actuators: A review, Robotics and Autonomous Systems, 61-12: 1601-1614 (2013) [CrossRef] [Google Scholar]
  14. Engineering Data CSD-2A Component Sets, catalog, Harmonic Drive AG, (2014) [Google Scholar]
  15. A. Parmiggiani, G. Metta, et al.: On the performance of actuators with Harmonic Drive speed reducers. 14th Int. Conf. on New Actuators: 23-25 (2014) [Google Scholar]
  16. M.R. Pitkin: Synthesis of a cycloidal mechanism of the prosthetic ankle, Prosthetics and Orthotics International, 20-3: 159-171 (1996) [Google Scholar]
  17. H.W. Mueller: Die Umlaufgetriebe, Berlin, Springer-Verlag (1998) [CrossRef] [Google Scholar]
  18. A. Kapelevich: High Gear Ratio Epicyclic Drives Analysis, Gear Technology 06-2014: 62-67 (2014) [Google Scholar]
  19. H.E. Merritt: Gear Trains, London, Issac Pitman & Sons Ltd (1947) [Google Scholar]
  20. B.R. Höhn, K. Stahl, P. Gwinner: Improved Efficiency for High-Ratio Planetary Gear Transmissions: Low-loss Wolfrom transmission for wind turbines. Getriebe Aktuell 2014 1-1: 6-11 (2014) [Google Scholar]
  21. ANSI/AGMA 6123-C16, Design manual for enclosed epicyclic gear drives (2016) [Google Scholar]
  22. K. Arnaudov, D. Karaivanov, L. Dimitrov: Some practical problems of distribution and equalization of internal loads in planetary gear trains, 4th International Conference on Power Transmissions (2012) [Google Scholar]
  23. ANSI/AGMA 2001-D04, Fundamental rating factors and calculation methods for involute spur and helical gear teeth (2004) [Google Scholar]
  24. A. Mihailidis, I. Nerantzis: A New System for Testing Gears Under Variable Torque and Speed, Recent Patents on Mec. Eng., 2-3: 179-192 (2009) [CrossRef] [Google Scholar]
  25. D.A. Winter: Biomechanical motor patterns in normal walking, Motor Behavior 15-4: 302-330 (1983) [Google Scholar]
  26. J. Looman: Zahnradgetriebe: Grundlagen, Konstruktionen, Anwendungen in Fahrzeugen, Berlin, Heidelberg and New York, Springer-Verlag (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.