Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 02025
Number of page(s) 12
Section Data and Signal Processing
DOI https://doi.org/10.1051/matecconf/201927702025
Published online 02 April 2019
  1. Aske R Lejbølle, Nasrollahi K and Thomas B Moeslund 2018 Enhancing person reidentification by late fusion of low-, mid-and high-level features Iet Biometrics 7(2)125-135 [CrossRef] [Google Scholar]
  2. Liao S, Hu Y, Zhu X and Li S Z 2015 Person re-identification by Local Maximal Occurrence representation and metric learning IEEE Conference on Computer Vision and Pattern Recognition Vol.8 2197-2206 [Google Scholar]
  3. Matsukawa T, Okabe T, Suzuki E and Sato Y 2016 Hierarchical Gaussian Descriptor for Person Re-identification Computer Vision and Pattern Recognition 1363-1372 [Google Scholar]
  4. Tan F, Liu K and Zhao X 2017 Person Re-Identification Based on Multi-Level and Multi-Feature Fusion International Conference on Smart City and Systems Engineering 184-187 [Google Scholar]
  5. Jose C and Fleuret F 2016 Scalable Metric Learning via Weighted Approximate Rank Component Analysis European Conference on Computer Vision 875-890 [Google Scholar]
  6. Yang Y, Liao S, Lei Z and Li S Z 2016 Large scale similarity learning using similar pairs for person verification Thirtieth AAAI Conference on Artificial Intelligence 3655-3661 [Google Scholar]
  7. Ahmed E, Jones M and Marks T K 2015 An improved deep learning architecture for person re-identification Computer Vision and Pattern Recognition 3908-3916 [Google Scholar]
  8. Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet classification with deep convolutional neural networks International Conference on Neural Information Processing Systems Vol.60 1097-1105 [Google Scholar]
  9. Li W, Zhao R, Xiao T, and Wang X 2014 DeepReID: Deep Filter Pairing Neural Network for Person Re-identification IEEE Conference on Computer Vision and Pattern Recognition 152-159 [Google Scholar]
  10. Varior R R, Haloi M and Wang G 2016 Gated Siamese Convolutional Neural Network Architecture for Human Re-identification European Conference on Computer Vision 791-808 [Google Scholar]
  11. Varior R R, Shuai B, Lu J, Xu D and Wang G 2016 A Siamese Long Short-Term Memory Architecture for Human Re-identification European Conference on Computer Vision 135-153 [Google Scholar]
  12. Yu Q, Chang X, Song Y Z, Xiang T and Hospedales T M 2017 The devil is in the middle: exploiting mid-level representations for cross-domain instance matching ArXiv e-prints 1711.08106 [Google Scholar]
  13. Wu S, Chen Y C, Li X, Wu A C, You J J and Zheng W S 2016 An enhanced deep feature representation for person re-identification Applications of Computer Vision 1-8 [Google Scholar]
  14. Yi D, Lei Z, Liao S and Li S Z 2014 Deep Metric Learning for Person Reidentification International Conference on Pattern Recognition 34-39 [Google Scholar]
  15. Chen L, Zhang H, Xiao J, Nie L, Shao, J and Liu W 2017 Sca-cnn: spatial and channelwise attention in convolutional networks for image captioning Computer Vision and Pattern Recognition 6298-6306 [Google Scholar]
  16. Xu K, Ba J, Kiros R, Cho K, Courville A and Salakhutdinov R 2015 Show, attend and tell: neural image caption generation with visual attention Computer Science 2048-2057 [Google Scholar]
  17. You Q, Jin H, Wang Z, Fang C and Luo J 2016 Image Captioning with Semantic Attention Computer Vision and Pattern Recognition 4651-4659 [Google Scholar]
  18. Choi H, Cho K and Bengio Y 2018 Fine-grained attention mechanism for neural machine translation Neurocomputing 284 [Google Scholar]
  19. Luong M T, Pham H and Manning C D 2015 Effective approaches to attention-based neural machine translation Computer Science [Google Scholar]
  20. Chen K, Wang J, Chen L C, Gao H, Xu W and Nevatia R 2015 Abc-cnn: an attention based convolutional neural network for visual question answering Computer Science [Google Scholar]
  21. Lioutas V, Passalis N and Tefas A 2018 Visual Question Answering using Explicit Visual Attention IEEE International Symposium on Circuits and Systems 1-5 [Google Scholar]
  22. Zheng L, Shen L, Tian L, Wang S, Wang J and Tian Q 2015 Scalable Person Reidentification:A Benchmark IEEE International Conference on Computer Vision 1116-1124 [Google Scholar]
  23. Ristani E, Solera F, Zou R, Cucchiara R and Tomasi C 2016 Performance Measures and a Data Set for Multi-target, Multi-camera Tracking European Conference on Computer Vision 17-35 [Google Scholar]
  24. An L, Kafai M, Yang S and Bhanu B 2016 Person reidentification with reference descriptor IEEE Transactions on Circuits & Systems for Video Technology 26(4) 776-787 [CrossRef] [Google Scholar]
  25. Zhao R, Ouyang W and Wang X 2014 Learning Mid-level Filters for Person Reidentification IEEE Conference on Computer Vision and Pattern Recognition 144-151 [Google Scholar]
  26. Zhang L, Xiang T and Gong S 2016 Learning a Discriminative Null Space for Person Re-identification IEEE Conference on Computer Vision and Pattern Recognition 1239-1248 [Google Scholar]
  27. Yu H X, Wu A and Zheng W S 2017 Cross-View Asymmetric Metric Learning for Unsupervised Person Re-Identification IEEE International Conference on Computer Vision 994-1002 [Google Scholar]
  28. Chen Y C, Zhu X, Zheng W S and Lai J H 2018 Person re-identification by camera correlation aware feature augmentation IEEE Transactions on Pattern Analysis & Machine Intelligence 40(2) 392-408. [CrossRef] [Google Scholar]
  29. Chen W, Chen X, Zhang J and Huang K 2017 A multi-task deep network for person reidentification AAAI Conference on Artificial Intelligence [Google Scholar]
  30. Li W, Zhu X and Gong S 2017 Person re-identification by deep joint learning of multiloss classification International Joint Conference on Artificial Intelligence 2194-2200. [Google Scholar]
  31. Wang F, Zuo W, Lin L, Zhang D and Zhang L 2016 Joint Learning of Single-Image and Cross-Image Representations for Person Re-identification IEEE Conference on Computer Vision and Pattern Recognition 1288-1296 [Google Scholar]
  32. Zhao R, Oyang W and Wang X 2014 Person re-identification by saliency learning IEEE Transactions on Pattern Analysis & Machine Intelligence 39(2) 356-370 [CrossRef] [Google Scholar]
  33. Yang M, Wan W, Hou L and Zhang Y 2016 Person re-identification using human salience based on multi-feature fusion International Conference on Smart and Sustainable City and Big Data 5 [Google Scholar]
  34. Bazzani L, Cristani M and Murino V 2014 Sdalf: modeling human appearance with symmetry-driven accumulation of local features Person Re-Identification 63(4) 43-69 [CrossRef] [Google Scholar]
  35. Rahimpour A, Liu L, Taalimi A, Song Y and Qi H 2017 Person re-identification using visual attention IEEE SigPort http://sigport.org/2046 [Google Scholar]
  36. Zhuang Z, Ai H, Shang C and Xiao L 2017 Person re-identification with coarse-to-fine visual attention IEEE International Conference on Image Processing 1097-1101 [Google Scholar]
  37. Liu, H., Feng, J., Qi, M., Jiang, J and Yan S 2017 End-to-end comparative attention networks for person re-identification IEEE Transactions on Image Processing 26(7)3492-3506 [CrossRef] [Google Scholar]
  38. Wu L, Wang Y, Li X and Gao J 2018 Deep attention-based spatially recursive networks for fine-grained visual recognition IEEE Transactions on Cybernetics PP(99) 1-12 [Google Scholar]
  39. Li W, Zhu X and Gong S 2018 Harmonious attention network for person reidentification IEEE Conference on Computer Vision and Pattern Recognition 2285-2294 [Google Scholar]
  40. Yang Y, Liao S, Lei Z and Li S Z 2016 Large scale similarity learning using similar pairs for person verification Thirtieth AAAI Conference on Artificial Intelligence 3655-3661 [Google Scholar]
  41. Wei L, Zhang S, Yao H, Gao W and Tian Q 2017 GLAD: Global-Local-Alignment Descriptor for Pedestrian Retrieval ACM Multimedia [Google Scholar]
  42. Zhao L, Li X, Zhuang Y and Wang J 2017 Deeply-Learned Part-Aligned Representations for Person Re-identification IEEE International Conference on Computer Vision 3239-3248 [Google Scholar]
  43. Chen D, Yuan Z, Chen B and Zheng N 2016 Similarity Learning with Spatial Constraints for Person Re-identification IEEE Conference on Computer Vision and Pattern Recognition 1268-1277 [Google Scholar]
  44. Zheng L, Huang Y, Lu H and Yang Y 2017 Pose invariant embedding for deep person re-identification ArXiv e-prints 1701.07732 [Google Scholar]
  45. Su C, Li J, Zhang S, Xing J, Gao W and Tian Q 2017 Pose-driven deep convolutional model for person re-identification IEEE International Conference on Computer Vision 3980-3989 [Google Scholar]
  46. Sun Y, Zheng L, Deng W and Wang S 2017 SVDNet for Pedestrian Retrieval IEEE International Conference on Computer Vision 3820-3828 [Google Scholar]
  47. Lin Y, Zheng L, Zheng Z, Wu Y and Yang Y 2017 Improving person re-identification by attribute and identity learning ArXiv e-prints 1703.07220 [Google Scholar]
  48. Zheng Z, Zheng L and Yang Y 2017 Pedestrian alignment network for large-scale person re-identification ArXiv e-prints 1707.00408 [Google Scholar]
  49. Zhong Z, Zheng L, Cao D and Li S 2017 Re-ranking Person Re-identification with k-Reciprocal Encoding IEEE Conference on Computer Vision and Pattern Recognition 3652-3661 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.