Issue |
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
|
|
---|---|---|
Article Number | 02025 | |
Number of page(s) | 12 | |
Section | Data and Signal Processing | |
DOI | https://doi.org/10.1051/matecconf/201927702025 | |
Published online | 02 April 2019 |
Multi-layer attention for person re-identification
School of Cyber Security, Shanghai Jiao Tong University, Shanghai, 200240, China
* Corresponding author: wendypenny@sjtu.edu.cn
Person re-identification has been a significant application in the field of video surveillance analysis, yet it remains a challenging work to recognize the person of interest across disjoint cameras of different viewpoints. The factors affecting the identification results include the variation in background, different illumination conditions and the changes of human body poses. Existing person re-identification methods mainly focus on the feature extraction of the whole frame and metric learning functions. However, most of those algorithms treat different areas without distinction. It is worth emphasizing that different local regions make different contributions to image representaion, which exactly conforms to the attention mechanism. In this paper, we introduce a novel attention network which explores spatial attention in a convolutional neural network. Our algorithm learns the visual attention in multi-layer feature maps. The proposed model not only pays attention to the spatial probabilities of local regions, but also takes the features in different levels into consideration. We evaluate this multi-layer spatial attention model on three benchmark person re-identification datasets: Market-1501, CUHK03, and DukeMTMC-reID. The experiment results validate the advances of our adopted network by comparing with state-of-the-art baselines.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.