Open Access
Issue
MATEC Web Conf.
Volume 274, 2019
RICON17 - REMINE International Conference Valorization of Mining and other Mineral Wastes into Construction Materials by Alkali-Activation
Article Number 02004
Number of page(s) 7
Section Characterization of AAM, Such as Microstructure and Physical Properties
DOI https://doi.org/10.1051/matecconf/201927402004
Published online 22 February 2019
  1. P. Duxson, J. L. Provis, G. C. Lukey, J. S. J. Van Deventer. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 37 (2007) 1590-1597. [CrossRef] [Google Scholar]
  2. J. Temuujin, W. Rickard, M. Lee, A. Van Riessen, Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings, J. Non. Cryst. Solids. 357 (2011) 1399-1404. doi:https://dx.doi.org/10.1016/j.jnoncrysol.2010.09.063. [CrossRef] [Google Scholar]
  3. F. Škvára, T. Jílek, L. Kopecký, Geopolymer materials based on fly ash, Ceram. - Silikaty. 49(2005) 195-204. [Google Scholar]
  4. A. Palomo, M. W. Grutzeck, M. T. Blanco, Alkaliactivated fly ashes: A cement for the future, Cem. Concr. Res. 29 (1999) 1323-1329. doi: https://dx.doi.org/10.1016/S0008-8846(98)00243-9. [CrossRef] [Google Scholar]
  5. B. C. McLellan, R. P. Williams, J. Lay, A. Van Riessen, G. D. Corder, Costs and carbon emissions for geopolymers pastes in comparison to ordinary portland cement. J. Clean. Prod. 19 (9-10) (2011) 1080-1090. [CrossRef] [Google Scholar]
  6. L. K. Turner, F. G. Collins, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Const. Build. Mater. 43 (2013) 125-130. [CrossRef] [Google Scholar]
  7. A. M. Fernández-Jiménez, A. Palomo, C. López-Hombrados, Engineering properties of alkaliactivated concrete. ACI Mater. J. 103 (2) (2006) 106-112. [Google Scholar]
  8. D. L. Y. Kong, J. G. Sanjayan, Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30 (2008) 986-991. [CrossRef] [Google Scholar]
  9. D. L. Y. Kong, J. G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40 (2) (2010) 334-339. [CrossRef] [Google Scholar]
  10. A. Palomo, M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, M. W. Grutzeck, Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res. 29 (1999) 997-1004. [CrossRef] [Google Scholar]
  11. T. Bakharev, Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35 (2005) 658-670. [CrossRef] [Google Scholar]
  12. T. Bakharev, Durability of geopolymer materials in sodium and magnesium sulfate solution. Cem. Concr. Res. 35 (6) (2005) 1233-1246. [CrossRef] [Google Scholar]
  13. V. Li, T. Kanda, Innovations forum: engineered cementitious composites for structural applications. J. Mater. Civ. Eng. 10 (66) (1998) 66-69. [CrossRef] [Google Scholar]
  14. P. H. R. Borges, A Bhutta, L. T. Bavuzo, N. Banthia, Effect of SiO2/Al2O3 molar ratio on mechanical behavior and capillary sorption of MKbased alkali-activated composites reinforced with PVA fibres. Materials and Structures, 50 (2017). doi: https://dx.doi.org/10.1617/s11527-017-1021-y. [Google Scholar]
  15. C. Zanotti, Paulo H. R. Borges, A. Bhutta, N. Banthia, Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fibre reinforcement. Cem. Concr. Comp., 80 (2017) 307-316. doi: https://dx.doi.org/10.1016/j.cemconcomp.2016.12.014. [CrossRef] [Google Scholar]
  16. C. S. Bitencourt, B. H. Teider, J. B. Gallo, V. C. Pandolfelli, A geopolimerização como técnica para a aplicação do resíduo de bauxita. Cerâmica, 58(2012) 20-28. [Google Scholar]
  17. A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, Workability and strength of lignite bottom ash geopolymer mortar. J. Haz. Mat., 168 (2009) 44-50. [CrossRef] [Google Scholar]
  18. S. Songpiriyakij, T. Kubprasit, C. Jaturapitakkul, P. Chindaprasirt, Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Const. Build. Mater. 24 (2010) 236-240. [CrossRef] [Google Scholar]
  19. G. Kastiukas, X. Zhou, J. Castro-Gomes, Towards Preparation Conditions For The Synthesis Of Alkali-Activated Binders Using Tungsten Mining Waste, ASCE’s J. Mater. Civ. Eng. (2017) 1-35. doi:https://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002029. [Google Scholar]
  20. N. Sedira, J. Castro-Gomes, G. Kastiukas, X. Zhou, A. Vargas, A review on mineral wasten for alkaliactivated binders due to their chemical characteristics, Min. Sci. 24 (2017) 29-58. doi:https://dx.doi.org/10.5277/msc172402. [Google Scholar]
  21. J. L. Provis, V. J. S. J. Deventer, Geopolymers. Structures, Processing, Properties and Industrial Applications, (2009). doi:https://dx.doi.org/10.1533/9781845696382. [Google Scholar]
  22. X. Jiao, Y. Zhang, T. Chen, Thermal stability of a silica-rich vanadium tailing based geopolymer, Constr. Build. Mater. 38 (2013) 43-47. doi: https://dx.doi.org/10.1016/j.conbuildmat.2012.06.076. [CrossRef] [Google Scholar]
  23. IBRAM, Gestão e Manejo de Rejeitos da Mineração, (2016). [Google Scholar]
  24. ABNT. NBR 7215: Cimento Portland -Determinação da resistência à compressão. Rio de Janeiro, (1996). [Google Scholar]
  25. ABNT. NBR 8522: Concreto - Determinação do módulo estático de elasticidade à compressão. Rio de Janeiro, (2008). [Google Scholar]
  26. ASTM. ASTM Standard C 293-02: Standard test method for flexural strength of concrete (using simple beam with centerpoint loading) West Conshohocken, (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.