Open Access
MATEC Web Conf.
Volume 272, 2019
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
Article Number 01038
Number of page(s) 9
Published online 13 March 2019
  1. [Online] Accessed On: 24-09-2018 [Google Scholar]
  2. L. Dimitriou and P. Nikolaou, “Dynamic partitioning of urban road networks based on their topological and operational characteristics,” in 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MTITS), 2017. [Google Scholar]
  3. Tarique Anwar, Chengfei Liu, Hai L. Vu, Christopher Leckie, “Spatial Partitioning of Large Urban Road Networks,” presented at the 17th International Conference on Extending Database Technology (EDBT 14), Athens, Greece, pp. 343–354. [Google Scholar]
  4. Y. Ji and N. Geroliminis, “On the spatial partitioning of urban transportation networks,” Trans. Res. Part B: Methodol., vol. 46, no. 10, pp. 1639–1656, 2012. [CrossRef] [Google Scholar]
  5. T. Anwar, C. Liu, H. L. Vu, and C. Leckie, “Partitioning road networks using density peak graphs: Efficiency vs. accuracy,” Inf. Syst., vol. 64, pp. 22–40, 2017. [CrossRef] [Google Scholar]
  6. G. Karypis and V. Kumar. “Multilevel k-way partitioning scheme for irregular graphs”. Journal of Parallel and Distributed Computing, 48(1):96–129, 1998. [CrossRef] [Google Scholar]
  7. G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1998. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. D. Simon, “Partitioning of unstructured problems for parallel processing,” Computing Systems in Engineering, vol. 2, no. 2–3, pp. 135–148, 1991. [CrossRef] [Google Scholar]
  9. S. T. Barnard and H. D. Simon, “Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems,” Concurr. Comput., vol. 6, no. 2, pp. 101–117, 1994. [Google Scholar]
  10. J. C. Urschel and L. T. Zikatanov, “Spectral bisection of graphs and connectedness,” Linear Algebra Appl., vol. 449, pp. 1–16, 2014. [CrossRef] [Google Scholar]
  11. H. D. Simon, “Partitioning of unstructured problems for parallel processing,” Computing Systems in Engineering, vol. 2, no. 2–3, pp. 135–148, 1991. [CrossRef] [Google Scholar]
  12. M. T. Heath and P. Raghavan, “A Cartesian Parallel Nested Dissection Algorithm,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp. 235–253, 1995. [CrossRef] [Google Scholar]
  13. G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, “Automatic Mesh Partitioning,” in The IMA Volumes in Mathematics and its Applications, 1993, pp. 57– 84. [CrossRef] [Google Scholar]
  14. S. Arora, S. Rao, and U. Vazirani, “Geometry, flows, and graph-partitioning algorithms,” Commun. ACM, vol. 51, no. 10, p. 96, 2008. [CrossRef] [Google Scholar]
  15. B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning graphs,” in Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM) - Supercomputing ’95, 1995. [Google Scholar]
  16. B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.