Issue |
MATEC Web Conf.
Volume 272, 2019
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/201927201038 | |
Published online | 13 March 2019 |
A modified multilevel k-way partitioning algorithm for trip-based road networks
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka
* Corresponding author: mailto:chanaka.14@cse.mrt.ac.lk
In today’s world, the traffic volume on urban road networks is multiplying rapidly due to the heavy usage of vehicles and mobility on demand services. Migration of people towards urban areas result in increasing size and complexity of urban road networks. When handling such complex traffic systems, partitioning the road network into multiple sub-regions and managing the identified sub regions is a popular approach. In this paper, we propose an algorithm to identify sub-regions of a road network that exhibit homogeneous traffic flow patterns. In a stage wise manner, we model the road network graph by using taxi-trip data obtained on the selected region. Then, we apply the proposed modified multilevel kway partitioning algorithm to obtain optimal number of partitions from the developed road graph. An interesting feature of this algorithm is, resulting partitions are geographically connected and consists minimal interpartition trip flow. Our results show that the proposed algorithm outperforms state-of-the-art multilevel partitioning algorithms for tripbased road networks. By this research, we demonstrate the ability of road network partitioning using trip data while preserving the partition homogeneity and connectivity.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.