Open Access
Issue
MATEC Web Conf.
Volume 272, 2019
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
Article Number 01022
Number of page(s) 16
DOI https://doi.org/10.1051/matecconf/201927201022
Published online 13 March 2019
  1. A. Pennycott, L. de Novellis, A. Sabbatini, P. Gruber, and A. Sorniotti, “Reducing the motor power losses of a four-wheel drive, fully electric vehicle via wheel torque allocation,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 228, no. 7, pp. 830–839, 2014. [CrossRef] [Google Scholar]
  2. C. Angerer, S. Krapf, A. Buß, and M. Lienkamp, “Holistic modeling and optimization of electric vehicle powertrains considering longitudinal performance, vehicle dynamics, costs and energy consumption: (accepted),” in Technical Conferences and Computers and Information in Engineering Conference: Proceedings, Quebec, Canada, 2018. [Google Scholar]
  3. C. Angerer, M. Felgenhauer, I. Eroglu, M. Zähringer, and M. Lienkamp, “Scalable Dimension-, Weight- and Cost-Modeling for Components of Electric Vehicle Powertrains: (submitted),” in 21st International Conference on Intelligent Transportation Systems: Proceedings, Maui, 2018. [Google Scholar]
  4. L. de Novellis, A. Sorniotti, and P. Gruber, “Design and comparison of the handling performance of different electric vehicle layouts,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 228, no. 2, pp. 218–232, 2013. [CrossRef] [Google Scholar]
  5. H. Wu and H. Zhang, “Model-Based Design and Evaluation of Electric Vehicle Powertrain With Independent Driving Motors,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Proceedings, Boston, Massachusetts, USA, 2016. [Google Scholar]
  6. Z. Ye, M. F. Stapelbroek, J.-S. R. Pfluger, T. Reckeweg, and R. Savelsberg, “Smart Torque Vectoring Functionality for AWD Electric Vehicles,” in 30th International Electric Vehicle Symposium & Exhibition: Proceedings, Stuttgart, 2017. [Google Scholar]
  7. M. Greger, “Auswirkung einer variablen Momentenverteilung auf die Fahrdynamik,” Dissertation, Institute of Automotive Technology, Technical University of Munich, Munich, 2006. [Google Scholar]
  8. L. de Novellis, A. Sorniotti, P. Gruber, L. Shead, V. Ivanov, and K. Hoepping, “Torque vectoring for electric vehicles with individually controlled motors: state-of-the-art and future developments,” in 26th International Electric Vehicle Symposium, Los Angeles, 2012. [Google Scholar]
  9. M. Papageorgiou, M. Leibold, and M. Buss, Optimierung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. [CrossRef] [Google Scholar]
  10. U. Diwekar, Introduction to Applied Optimization. Boston, MA: Springer US, 2008. [CrossRef] [Google Scholar]
  11. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. [Google Scholar]
  12. K.-W. Jeon, T.-K. Chung, and S.-C. Hahn, “NEMA class a slot shape optimization of induction motor for electric vehicle using response surface method,” in International Conference on Electrical Machines and Systems (ICEMS): Proceedings, Beijing, China, 2011, pp. 1–4. [Google Scholar]
  13. I. Eroglu, L. Horlbeck, M. Lienkamp, and C. M. Hackl, “Increasing the overall efficiency of induction motors for BEV by using the overload potential through downsizing,” in International Conf. on Electric Machines and Drives Conference (IEMDC): Proceedings, Miami, FL, USA, 2017, pp. 1–7. [Google Scholar]
  14. P. K. Choudhary, S. P. Dubey, B. Tiwari, and B. Dewangan, “Efficiency optimization of induction motor drive using Artificial Neural Network,” in Energy Efficient Technologies for Sustainability (ICEETS), 2016 International Conference on, Nagercoil, India, 2016, pp. 821–827. [Google Scholar]
  15. N. M. Patel, B.-S. Kang, J. E. Renaud, and A. Tovar, “Crashworthiness Design Using Topology Optimization,” J. Mech. Des., vol. 131, no. 6, p. 61013, 2009. [Google Scholar]
  16. Z. Zhou, K. Hamza, and K. Saitou, “Decomposition Templates and Joint Morphing Operators for Genetic Algorithm Optimization of Multicomponent Structural Topology,” J. Mech. Des., vol. 136, no. 2, p. 21004, 2014. [Google Scholar]
  17. G. Domingues, A. Reinap, and M. Alakula, “Design and cost optimization of electrified automotive powertrain,” in International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2016, pp. 1–6. [Google Scholar]
  18. M. J. Alexander, J. T. Allison, and P. Y. Papalambros, “Decomposition-based design optimisation of electric vehicle powertrains using proper orthogonal decomposition,” IJPT, vol. 1, no. 1, p. 72, 2011. [CrossRef] [Google Scholar]
  19. M. Fries, S. Wolff, L. Horlbeck, M. Kerler, M. Lienkamp, A. Burke, and L. Fulton, “Optimization of hybrid electric drive system components in long-haul vehicles for the evaluation of customer requirements,” in 12th International Conference on Power Electronics and Drive Systems (PEDS): Proceedings, Honolulu, HI, 2017, 1,141–1,146. [Google Scholar]
  20. A. Schönknecht, A. Babik, and V. Rill, “Electric Powertrain System Design of BEV and HEV Applying a Multi Objective Optimization Methodology,” Transportation Research Procedia, vol. 14, pp. 3611–3620, 2016. [CrossRef] [Google Scholar]
  21. A. E. Baumal, J. J. McPhee, and P. H. Calamai, “Application of genetic algorithms to the design optimization of an active vehicle suspension system,” Computer Methods in Applied Mechanics and Engineering, vol. 163, no. 1-4, pp. 87–94, 1998. [CrossRef] [Google Scholar]
  22. J. P. C. Gonalves and J. A. C. Ambrsio, “Road Vehicle Modeling Requirements for Optimization of Ride and Handling,” Multibody Syst Dyn, vol. 13, no. 1, pp. 3–23, 2005. [CrossRef] [Google Scholar]
  23. A. C. Mitra, G. J. Desai, S. R. Patwardhan, P. H. Shirke, W. M.H. Kurne, and N. Banerjee, “Optimization of Passive Vehicle Suspension System by Genetic Algorithm,” Procedia Engineering, vol. 144, pp. 1158–1166, 2016. [CrossRef] [Google Scholar]
  24. J. Tobolar, R. Castro, de, U. Bleck, C. Satzger, and J. Brembeck, “Comparative evaluation of energy efficiency of electrical vehicle powertrain configurations,” in 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD 2015), Graz, 2015. [Google Scholar]
  25. A. Schultze and M. Lienkamp, “Potential of an improved energy efficiency in the chassis,” Automot. Engine Technol., vol. 1, no. 1-4, pp. 15–25, 2016. [Google Scholar]
  26. S. Fuchs, “Verfahren zur parameterbasierten Gewichtsabschätzung neuer Fahrzeugkonzepte,” Dissertation, Institute of Automotive Technology, Technical University of Munich, Munich, 2014. [Google Scholar]
  27. D. D. MacInnis, W. E. Cliff, and K. W. Ising, “A Comparison of Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation,” SAE Technical Paper, no. 970951, 1997. [Google Scholar]
  28. M. Abe, Ed., The dynamics of vehicles on roads and on tracks: Proceedings of the 18th IAVSD symposium held in Kanagawa, Japan, August 24- 30,2003. London: Taylor & Francis, 2004. [Google Scholar]
  29. M. Felgenhauer, C. Angerer, R. Marksteiner, F. Schneider, and M. Lienkamp, “Geometric substitute models for efficient scaling of dimensions during vehicle architecture design: (in press),” in Proceedings: 15th International Design Conference, Dubrovnik, 2018. [Google Scholar]
  30. I. Preda, “About the preliminary design of the suspension spring and shock absorber,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 147, p. 12128, 2016. [Google Scholar]
  31. S. Pischinger and U. Seiffert, Vieweg Handbuch Kraftfahrzeugtechnik. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. [CrossRef] [Google Scholar]
  32. B. Heißing, M. Ersoy, and S. Gies, Fahrwerkhandbuch. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. [Google Scholar]
  33. D. Vilela and R. S. Barbosa, “Analytical models correlation for vehicle dynamic handling properties,” J. Braz. Soc. Mech. Sci. & Eng., vol. 33, no. 4, pp. 437–444, 2011. [Google Scholar]
  34. M. Mitschke and H. Wallentowitz, Dynamik der Kraftfahrzeuge. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. [Google Scholar]
  35. A. Schultze, “Energieeinsparpotential im Fahrwerk von Kraftfahrzeugen,” Dissertation (submitted), Lehrstuhl für Fahrzeugtechnik, Technical University of Munich, Munich, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.