Open Access
Issue
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 03009
Number of page(s) 7
Section Asphalt Concrete Materials
DOI https://doi.org/10.1051/matecconf/201927103009
Published online 09 April 2019
  1. Yildirim, Y., Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66–72, (2007). [CrossRef] [Google Scholar]
  2. Lesueur, D., The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1-2), 42–82, (2009). [CrossRef] [PubMed] [Google Scholar]
  3. Polacco, G., Filippi, S., Merusi, F., and Stastna, G., A Review of the Fundamentals of Polymer-Modified Asphalts: Asphalt/polymer Interactions and Principles of Compatibility. Advances in Colloid and Interface Science, 224, 72–112, (2015). [CrossRef] [Google Scholar]
  4. Bahia H.U., Hanson D.I., Zeng M., Zhai H., Khatri M.A., Anderson M., National Highway Research Program (NCHRP) Report 459 Characterization of Modified Asphalt Binder in Superpave Mix Design, (2001). [Google Scholar]
  5. Zhu, J., Birgisson, B., and Kringos, N., Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18–38, (2014). [CrossRef] [Google Scholar]
  6. Cuciniello, G., Leandri, P., Filippi, S., Lo Presti, D., Losa, M., and Airey, G.D. Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens, Materials and Structures, 51(136), (2018). [CrossRef] [Google Scholar]
  7. Goodrich, J.L., Asphalt and Polymer Modified Asphalt Properties Related to the Performance of Asphalt Concrete Mixes (with discussion). Journal of Association of Asphalt Paving Technologists, 57, 116–175, (1988). [Google Scholar]
  8. Petersen, J. C. Chemical Composition of Asphalt as Related to Asphalt Durability: State of the Art. Transportation Research Record 999 Transportation Research Board, 13–30, (1984). [Google Scholar]
  9. Petersen, J., and R. Glaser. Asphalt Oxidation Mechanisms and the Role of Oxidation Products on Age Hardening Revisited. Road Materials and Pavement Design, 12(4), 795–819, (2011). [CrossRef] [Google Scholar]
  10. Page, G.C., Murphy, K.H., Ruth, B.E., and Roque, R., Asphalt binder Hardening-Causes and Effects. Journal of Association of Asphalt Paving Technologists, 140–167, (1985). [Google Scholar]
  11. Lu, X., and Isacsson, U., Chemical and Rheological CharacteristicsofStyrene-Butadiene-Styrene Polymer-Modified Bitumens. Transportation Research Record: Journal of the Transportation Research Board, 1661, 83–92, (1999). [CrossRef] [Google Scholar]
  12. Lu, X., and Isacsson, U., Artificial aging of polymer modified bitumens. Journal of Applied Polymer Science, 76(12), 1811–1824, (2000). [CrossRef] [Google Scholar]
  13. Xu, J., Zhang, A., Zhou, T., Cao, X., and Xie, Z., A study on thermal oxidation mechanism of styrene– butadiene–styrene block copolymer (SBS). Polymer Degradation and Stability, 92(9), 1682–1691, (2007). [CrossRef] [Google Scholar]
  14. Negulescu, I., Muhammad, L., Daly, W., Abadie, C., Cuero, R., Daranga, C., and Glover, I., Chemical and rheological characterization of Wet and Dry Aging of SBS Copolymer Modified Asphalt Cement: Laboratory and Field Evaluation. Journal of the Association of Asphalt Paving Technologists, 75, 267–296, (2006). [Google Scholar]
  15. Lucena, M., Soares, S., and Soares, J., Characterization and thermal behavior of polymer-modified asphalt. Materials Research, 7(4), 529–534, (2004). [CrossRef] [Google Scholar]
  16. Cortizo, M., Larsen, D., Bianchetto, H., and Alessandrini, J., Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts. Polymer Degradation and Stability, 86(2), 275–282, (2004). [CrossRef] [Google Scholar]
  17. Airey, G.D, and Brown, S. F., Rheological Performance of Aged Polymer Modified Bitumens, Journal of Association of Asphalt Pavement Technologists, 67, 66–100, (1998). [Google Scholar]
  18. J. Oliver, P. Tredera, The Change in Properties of Polymer Modified Binders with Simulated Field Exposure. Journal of the Association of Asphalt Paving Technologists, 66, 570–602, (1997). [Google Scholar]
  19. Lu, X., Soenen, H., Heyrman, S., Redelius, P., Durability of Polymer Modified Binders in Porous Asphalt Pavements, Proceedings of the XXVIII International Baltic Road Conference, (2013). [Google Scholar]
  20. Bahia, H.U., Zhai, H., Onnetti, K., and Kose, S., Non-Linear Viscoelastic and Fatigue Properties of Asphalt Binders. Journal of Association of Asphalt Pavement Technologists, 68, 1–34, (1999). [Google Scholar]
  21. Airey, G. D., Rahimzadeh, B., and Collop, A., Linear Rheological Behavior of Bituminous Paving Materials. Journal of Materials in Civil Engineering, 16(3), 212–220, (2004). [CrossRef] [Google Scholar]
  22. Bahia, H.U., Perdomo, D., and Turner, P., Applicability of Superpave Binder Testing Protocols to Modified Binders. Transportation Research Record: Journal of the Transportation Research Board, 1586, 16–23, (1997). [CrossRef] [Google Scholar]
  23. D’Angelo, J., Kluttz, R., Revision of the Superpave high temperature binder specification: the multiple stress creep recovery test (with discussion). Journal of the Association of Asphalt Paving Technologists, 76, 123–162, (2007). [Google Scholar]
  24. Golalipour, A., Modification of multiple stress creep recovery test procedure usage in specification. Master Thesis, University of Wisconsin at Madison, (2011). [Google Scholar]
  25. Clopotel, C., and Bahia, H.U., Importance of Elastic Recovery in the DSR for Binders and Mastics. Engineering Journal, 16(4), 99–106, (2012). [CrossRef] [Google Scholar]
  26. Singh, B., Saboo, N., and Kumar, P., Effect of Short-Term Aging on Creep and Recovery Response of Asphalt Binders. Journal of Transportation Engineering, Part B: Pavements, 143(4), p. 04017017, (2017). [CrossRef] [Google Scholar]
  27. Hintz, C., Velasquez, R.A., Li, Z., and Bahia, H.U., Effect of oxidative aging on binder fatigue performance. Journal of the Association of Asphalt Paving Technologists, 80, 527–548, (2011). [Google Scholar]
  28. Cuciniello, G., Leandri, P., Filippi, S., Lo Presti, D., Polacco, G., Losa, M., and Airey, G.D. Microstructure and Rheological Response of Laboratory-Aged SBS-Modified Bitumens. Paper submitted to the 8th EATA Conference, Granada Spain, 3-5 June 2019. [Google Scholar]
  29. Anderson, D.A., Bonaquist, R., National Highway Research Program (NCHRP) Report 709 Investigation of Short-Term Laboratory Aging of Neat and Modified Asphalt binders, (2012). [Google Scholar]
  30. Mandal, T., Sylla, R., Bahia, H.U., and Barmand S., Effect of cross-linking agents on the rheological properties of polymer-modified bitumen. Road Materials and Pavement Design, 16(1), 349–361, (2015). [CrossRef] [Google Scholar]
  31. Zhang, F., Yu, J., and Wu, S., Effect of ageing on rheologicalpropertiesofstorage-stable SBS/sulphur-modified asphalts. Journal of Hazardous Materials, 182(1-3), 507–517, (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.