Issue |
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 5 | |
Section | Asphalt Concrete Materials | |
DOI | https://doi.org/10.1051/matecconf/201927103008 | |
Published online | 09 April 2019 |
What are the Alternatives of PG Plus Tests for Modified Asphalt Binders?
1
Department of Engineering, Arkansas State University, Jonesboro, AR - 72467
2
Department of Civil Engineering, Arkansas State University, PO Box 1740, State University, AR - 72467
* Corresponding author: mhossain@astate.edu
For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. The main goal of this study is to recommend alternative test method(s), which can possibly be pursued by using, a Dynamic Shear Rheometer (DSR). Thus, Multiple Stress Creep and Recovery (MSCR), ER-DSR, Frequency Sweep, and Binder Yield Energy Test (BYET) are being explored to find their effectiveness. Three PG binders (PG 64-22, PG 70-22 and PG 76-22) have been selected for this investigation. These binders have been prepared with styrene-butadiene-styrene (SBS) polymer, PPA, or a combination of both. Further, chemical tests such as SARA (Saturate, Aromatic, Resin, and Asphaltene) analysis and FTIR (Fourier-transform Infrared spectroscopy) are also being explored to fulfill the objectives. Preliminary findings suggest that the PG Plus tests deem to be obsolete. Also, a single test procedure is not sufficient to identify the presence and effectiveness of modifiers in the PG binders.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.