Open Access
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 03008
Number of page(s) 5
Section Asphalt Concrete Materials
Published online 09 April 2019
  1. Becker, Y., Mendez, M.P., and Rodriguez, Y. (2001). A polymer modified asphalt. Vision Technol. 9:39–50. [Google Scholar]
  2. Yildirim, Y. (2007). Polymer modified asphalt binders. Constr. Build. Mater. 21:66–72. [CrossRef] [Google Scholar]
  3. Clopotela, C.S., and Bahia, H.U. (2012). Importance of Elastic Recovery in the DSR for Binders and Mastics. Engineering Journal, 16(4):99–106. [CrossRef] [Google Scholar]
  4. AASHTO T 301-13. (2013). Standard Method of Test for Elastic Recovery Test of Asphalt Materials by Means of a Ductilometer. Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 2B, 33th Edition, Washington, DC. [Google Scholar]
  5. Rahaman, M.Z., Hossain, Z., and Zaman, M. (2018). Nonrecoverable Compliance and Recovery Behavior of Polymer-Modified and Reclaimed Asphalt Pavement-Modified Binders in Arkansas. Journal of Testing and Evaluation. 46(6):2483–2497. [CrossRef] [Google Scholar]
  6. AASHTO M320-16. (2016). Standard Method of Test for Performance-Graded Asphalt Binder. Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 2B, 36th Edition, Washington, DC. [Google Scholar]
  7. AASHTO M332-14. (2014). Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test. Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 2B, 34th Edition, Washington, DC. [Google Scholar]
  8. Moraes, R., Swiertz, D., and Bahia, H.U. (2017). Comparison of New Test Methods and New Specifications for Rutting Resistance and Elasticity of Modified Binders. Canadian Technical Asphalt Association. [Google Scholar]
  9. D’Angelo, J. (2010). New High-Temperature Binder Specification Using Multistress Creep and Recovery, Transportation Research Circular EC-147, Transportation Research Board, National Research Council, National Academies, Washington, D.C., 1–13. [Google Scholar]
  10. AASHTO TP 101. (2014). Standard method of test for estimating damage tolerance of asphalt binders using the linear amplitude sweep. Washington D.C. [Google Scholar]
  11. Johnson, C.M. (2010). Estimating asphalt binder fatigue resistance using an accelerated test method. Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI. [Google Scholar]
  12. Hintz, C. and Bahia, H. (2013). Simplification of linear amplitude sweep test and specification parameter. Transp. Res. Record: J. Transp. Res. Board 2370:10–16. [CrossRef] [Google Scholar]
  13. American Association of State Highway and Transportation Officials (AASHTO) TP 123. (2016). Measuring asphalt binder yield energy and elastic recovery using the dynamic shear rheometer. Washington D.C. [Google Scholar]
  14. Johnson, C.M., Wen, H., and Bahia, H. (2009). Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization, J. Asphalt Paving Technol. 78:597–638. [Google Scholar]
  15. Wen, H. and Bhusal, S. (2013). Toward development of a new thermal cracking test using the dynamic shear rheometer, J. Test. Eval. 41(3):1–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.