Open Access
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 06002
Number of page(s) 7
Section Marine and Offshore
Published online 22 February 2019
  1. B. Eccles, “Fatigue Failure Of Welded Joints”, p.40. ary/20053437.pdf [Google Scholar]
  2. S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, and A. G. Rao, “Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy navalgrade steel joints”, Def. Technol., vol. 11, no. 3, pp. 308-317, (2015). [CrossRef] [Google Scholar]
  3. F. B. Pickering, “High Strength Low Alloy Steels”, Mater. Sci. Technol., vol. 45, no. 4, pp. 295-301, (2006). [Google Scholar]
  4. “Standard BS EN 10225 Weldable structuralsteels for fixed offshore structures Technical delivery conditions.pdf.” (2001). [Google Scholar]
  5. “Current world-wide trends in the usage of modern steel plates for bridge constructions.pdf” [Google Scholar]
  6. J. Johnson, “Fatigue Improvement Techniquesfor Welds”. [Google Scholar]
  7. G. B. Marquis, E. Mikkola, H. C. Yildirim, and Z. Barsoum, “Fatigue strength improvement of steel structures by high-frequency mechanical impact: Proposed fatigue assessment guidelines”, Weld. World, vol. 57, no. 6, pp. 803-822, (2013). [CrossRef] [Google Scholar]
  8. G. Marquis and Z. Barsoum, “Fatigue strength improvement of steel structures by highfrequency mechanical impact: Proposedprocedures and quality assurance guidelines”, Weld. World, vol. 58, no. 1, pp. 19-28, (2014). [CrossRef] [Google Scholar]
  9. M. Leitner, M. Stoschka, R. Schanner, and W. Eichlseder, “Influence of high frequency peening on fatigue of high-strength steels”, FME Trans., vol. 40, no. 3, pp. 99-104, (2012). [Google Scholar]
  10. M. Leitner, M. Stoschka, and W. Eichlseder, “Contribution to the fatigue enhancement of thin-walled, high-strength steel joints by high frequency mechanical impact treatment”, pp. 1-15. [Google Scholar]
  11. M. Leitner, Z. Barsoum, and F. Schäfers, “Crack propagation analysis and rehabilitation by HFMIof pre-fatigued welded structures”, Weld. World, vol. 60, no. 3, pp. 581-592, (2016). [CrossRef] [Google Scholar]
  12. P. Gerster, F. Schäfers, and M. Leitner, “Pneumatic Impact Treatment (PIT) -Application and Quality Assurance”, Int. Inst. Weld., pp. 1-11, (2013). [Google Scholar]
  13. M. H. and S. J. M. H-P Lieurade,“Recommendation on The Fatigue Testing of Welded Components”, Int. Inst. Weld., no. XIII-2140-06, pp. 1-25, (2012). [Google Scholar]
  14. S. Practice, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life ( SN ) and Strain-Life ( e -N ) Fatigue Data 1”, vol. 91, no. Reapproved, pp. 1-7, (1998). [Google Scholar]
  15. A. Hobbacher, “Recommendations for Fatigue Design of Welded Joints and Components”, IIW Doc. IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07, pp. 1-149, (2008). [Google Scholar]
  16. A. Harati Ebrahim and O. Högskolan A. för tillverkningsprocesser Väst Institutionen för ingenjörsvetenskap, Fatigue strength of welds in 800 MPa yield strength steels: Effects of weld toe geometry and residual stress., no. 3. (2015). [Google Scholar]
  17. N. W. Sachs, “Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history”, J. Fail. Anal. Prev., vol. 5, no. 2, pp. 11-15, (2005). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.