Issue |
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 7 | |
Section | Marine and Offshore | |
DOI | https://doi.org/10.1051/matecconf/201926906002 | |
Published online | 22 February 2019 |
Effects of High Frequency Mechanical Impact on Fatigue Life of Semi-Automated Gas Metal Arc Welding (GTAW) of HSLA Butt Weld
1
Nusantara Technologies Sdn, Bhd., Selangor, Malaysia
2
Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, Malaysia
3
Universiti Kuala Lumpur Malaysia France Institute, Selangor, Malaysia
4
Chair of Mechanical Engineering, Montanuniversität Leoben, Austria
Corresponding author: muhdfaiz7062@salam.uitm.edu.my
This paper deals with a comprehensive investigation of fatigue life enhancement on semiautomated Gas Metal Arc Welding (GTAW) butt weld joint which is found almost everywhere in Malaysia welding structure steel sectors. The selected material in this study was high strength low alloy steel S460G2+M commonly used extremely in steel structure due to its outstanding mechanical properties. In this investigation, the method for joining the butt weld was conducted by unprofessional welder using semi-automated GMAW. At first, suitable welding parameters were identified and formulated into welding procedure specification (WPS) qualification conforming to AWS D1.1 standard. The test specimens were prepared and tested to ensure the welding quality. Further, the HFMI using Pneumatic Impact Treatment (PIT) technique were applied at the weld toe of the butt weld as tool for fatigue life enhancement. To investigate the influence of HFMI/PIT on the fatigue strength, the specimens were undergone fatigue test using universal fatigue machine using a constant amplitude loading. Finally, the comparison of the fatigue strength of as welded and treated specimens to indicate the beneficial influence of the treatment. Yes, the conduction by unprofessional welder using semi-automatic GMAW, the findings showed the improvement of fatigue strength and slope of S-N curves. In addition, the fracture location of test specimen shows physically affected by shifting from critical weld transition to base metal. The tensile test and hardness value also showed a slight difference as compared to untreated specimens.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.