Open Access
Issue
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 05004
Number of page(s) 9
Section Additive Smart Manufacturing
DOI https://doi.org/10.1051/matecconf/201926905004
Published online 22 February 2019
  1. J. Dawes, R. Bowerman, and R. Trepleton, “Introduction to the additive manufacturing powder metallurgy supply chain,” Johnson Matthey Technology Review vol. 59, pp. 243-256, (2015) [CrossRef] [Google Scholar]
  2. B. Xu, “Theory and technology of equipment remanufacturing engineering,” National Defense Industrial Press, Beijing, (2007) [Google Scholar]
  3. Y.-H. Lü, Y.-X. Liu, F.-J. Xu, and B.-S. Xu, “Plasma transferred arc forming technology for remanufacture,” Advances in Manufacturing, vol. 1, pp. 187-190, (2013) [CrossRef] [Google Scholar]
  4. C. Doumanidis, “Three-dimensional welding update rapid prototyping report,” in Am Soc Mech Eng,, pp. 41-45. (1999) [Google Scholar]
  5. C.-Y. Tsai, H.-C. Hsi, H. Bai, K.-S. Fan, and C. Chen, “TiO 2x nanoparticles synthesized using He/Ar thermal plasma and their effectiveness on lowconcentration mercury vapor removal,” Journal of Nanoparticle Research, vol. 13, pp. 4739-4748, (2011) [CrossRef] [Google Scholar]
  6. S.-M. Oh and D.-W. Park, “Production of ultrafine titanium dioxide by DC plasma jet,” Thin Solid Films, vol. 386, pp. 233-238, (2001) [CrossRef] [Google Scholar]
  7. Y.-L. Li and T. Ishigaki, “Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation,” The Journal of Physical Chemistry B, vol. 108, pp. 15536-15542, (2004) [CrossRef] [Google Scholar]
  8. Y. Tanaka, H. Sakai, T. Tsuke, Y. Uesugi, Y. Sakai, and K. Nakamura, “Influence of coil current modulation on TiO2 nanoparticle synthesis using pulse-modulated induction thermal plasmas,” Thin Solid Films, vol. 519, pp. 7100-7105, 2011. [CrossRef] [Google Scholar]
  9. H. Peng, B. Liuyang, Y. Lingjie, L. Jinlin, Y. Fangli, and C. Yunfa, “Shape-controlled synthesis of ZnS nanostructures: a simple and rapid method for onedimensional materials by plasma,” Nanoscale research letters, vol. 4, p. 1047, 2009. [CrossRef] [Google Scholar]
  10. T. Ishigaki and J.-G. Li, “Synthesis of functional TiO2based nanoparticles in radio frequency induction thermal plasma,” Pure and Applied Chemistry, vol. 80, pp. 1971-1979, 2008. [CrossRef] [Google Scholar]
  11. J. Li, M. Ikeda, R. Ye, Y. Moriyoshi, and T. Ishigaki, “Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma,” Journal of Physics D: Applied Physics, vol. 40, p. 2348, 2007. [CrossRef] [Google Scholar]
  12. S.-M. Oh and T. Ishigaki, “Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma,” Thin Solid Films vol. 457, pp. 186-191, 2004. [CrossRef] [Google Scholar]
  13. J. Li, R. Büchel, and M. Isobe, “Mori T and Ishigaki T,” J. Phys. Chem. C, vol. 2009, p. 113, 2009. [Google Scholar]
  14. Y. C. Hong and H. S. Uhm, “Production of nanocrystalline TiO2 powder by a microwave plasmatorch and its characterization,” Japanese Journal of Applied Physics, vol. 46, p. 6027, 2007. [CrossRef] [Google Scholar]
  15. J.-H. Seo and B.-G. Hong, “Thermal plasma synthesis of nano-sized powders,” Nuclear engineering and technology, vol. 44, pp. 9-20, 2012. [CrossRef] [Google Scholar]
  16. S. X. Liu, J. L. Liu, X. S. Li, X. Zhu, and A. M. Zhu, “Gliding arc plasma synthesis of visible-light active C-doped titania photocatalysts,” Plasma Processes and Polymers, vol. 12, pp. 422-430, 2015. [CrossRef] [Google Scholar]
  17. Dharmanto, S. Hendi and D. Sebayang, “The simple fabrication of nanorods mass production for the dyesensitized solar cell,” in MATEC Web of Conferences, 2017, p. 03006. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. S. Baskoro, A. Fauzian, H. Basalamah, G. Kiswanto, and W. Winarto, “Improving weld penetration by employing of magnetic poles’ configurations to an autogenous tungsten inert gas (TIG) welding,” The International Journal of Advanced Manufacturing Technology, vol. 99, pp. 1603-1613, 2018. [CrossRef] [Google Scholar]
  19. P. Chapelle, H. El Mir, J. Bellot, A. Jardy, D. Ablitzer, and D. Lasalmonie, “Modelling of the arc plasma behaviour in the VAR process,” Journal of materials science, vol. 39, pp. 7145-7152, 2004. [CrossRef] [Google Scholar]
  20. D. Kostrin, A. Lisenkov, and N. Potrakhov, “Formation of Biomedical Coatings with Complex Compositions Using Vacuum Arc Plasma,” Biomedical Engineering, vol. 51, pp. 262-266, (2017) [CrossRef] [Google Scholar]
  21. A. L.H.A. Kuhn, “Powder Metallurgy Processing. New Techniques and Analyses,” Academic Press, 1978. [Google Scholar]
  22. A. Alagheband and C. Brown, “Plasma Atomization goes commercial,” Metal Powder Report, vol. 53, pp. 26-28, 1998/11/01/ 1998. [CrossRef] [Google Scholar]
  23. H. Zhu, H. Tong, F. Yang, and C. Cheng, “Plasmaassisted preparation and characterization of spherical stainless steel powders,” Journal of Materials Processing Technology, vol. 252, pp. 559-566, 2018. [CrossRef] [Google Scholar]
  24. M. Boulos, “Plasma power can make better powders”, Metal Powder Report, vol. 59, pp. 16-21, 2004. [CrossRef] [Google Scholar]
  25. S. Supriadi, E. Baek, C. Choi, and B. Lee, “Binder system for STS 316 nanopowder feedstocks in micrometal injection molding,” Journal of Materials Processing Technology, vol. 187, pp. 270-273, 2007. [CrossRef] [Google Scholar]
  26. M. F. Zhukov and I. Zasypkin, Thermal plasma torches: design, characteristics, application: Cambridge Int Science Publishing, 2007. [Google Scholar]
  27. L. Fulcheri, F. Fabry, S. Takali, and V. Rohani, “Three-phase AC arc plasma systems: a review,” Plasma Chemistry and Plasma Processing, vol. 35, pp. 565-585, 2015. [CrossRef] [Google Scholar]
  28. S. Mohsenian, M. S. Esmaili, B. Shokri, and M. Ghorbanalilu, “Physical characteristics of twin DC thermal plasma torch applied to polymer waste treatment,” Journal of Electrostatics, vol. 76, pp. 231-237, 2015. [CrossRef] [Google Scholar]
  29. V. Rat, F. Mavier, and J. Coudert, “Electric arc fluctuations in dc plasma spray torch,” Plasma Chemistry and Plasma Processing vol. 37, pp. 549-580, 2017. [CrossRef] [Google Scholar]
  30. K. Nishiguchi, “Plasma arc welding and cutting,” in Advanced Joining Technologies, ed: Springer, 1990, pp. 36-47. [CrossRef] [Google Scholar]
  31. G. Mauer, R. Vaßen, and D. Stöver, “Plasma and particle temperature measurements in thermal spray: approaches and applications,” Journal of thermal spray technology, vol. 20, pp. 391-406, 2011. [CrossRef] [Google Scholar]
  32. S. Samal, “Thermal plasma technology: The prospective future in material processing,” Journal of cleaner production, vol. 142, pp. 3131-3150, 2017. [CrossRef] [Google Scholar]
  33. E. Nogues, M. Vardelle, P. Fauchais, and P. Granger, “Arc voltage fluctuations: Comparison between two plasma torch types,” Surface and Coatings Technology, vol. 202, pp. 4387-4393, 2008. [CrossRef] [Google Scholar]
  34. I. Gulyaev, A. Dolmatov, M. Y. Kharlamov, P. Y. Gulyaev, V. Jordan, I. Krivtsun, et al., “Arc-plasma wire spraying: an optical study of process phenomenology,” Journal of Thermal Spray Technology, vol. 24, pp. 1566-1573, (2015) [CrossRef] [Google Scholar]
  35. G. Mesyats and E. Oks, “Charge distribution of ions in low-current vacuum-arc plasma,” Technical Physics Letters, vol. 39, pp. 687-689, (2013) [CrossRef] [Google Scholar]
  36. G. Mesyats, S. Bugayev, and D. Proskurovskiy, “Explosive Emission of Electrons from Metal Tips,” Uspekhi fizikicheskikh nauk, vol. 104, p. 673, 1971. [Google Scholar]
  37. G. Mesyats, “Explosive Electron Emission (Fizmatlit, Moscow, 2011),” Google Scholar. [Google Scholar]
  38. S. Gao, S. Chen, K. Chen, Z. Ji, and J. Chen, “A long pulse width and high extraction rate arc plasma 53. electron beam source,” Instruments and Experimental Techniques, vol. 60, pp. 705-709, 2017. [CrossRef] [Google Scholar]
  39. A. Bugaev, V. Gushenets, A. Nikolaev, E. Oks, K. Savkin, V. Frolova, et al., “Generation of High Charge State Metal Ions in an Arc Plasma,” Russian Physics Journal, vol. 60, pp. 1392-1399, 2017. [CrossRef] [Google Scholar]
  40. Z. F. Ghatass, G. D. Roston, and M. M. Mohamed, “Three-phase plasma arc atomic-emission spectrometric analysis of environmental samples using an ultrasonic nebulizer,” Analytical and bioanalytical chemistry, vol. 376, pp. 549-553, 2003. [CrossRef] [Google Scholar]
  41. C. Xi, “Heat transfer and fluid flow under thermal 56. plasma conditions,” Beijing: Science Press, vol. 429, p. 457, 1993. [Google Scholar]
  42. L. An and Y. Gao, “Electric Characteristics of Plasma Arc Produced by Bi-Anode Torch,” Journal of thermal spray technology, vol. 19, pp. 459-464, 2010. [CrossRef] [Google Scholar]
  43. G. Miloshevsky, G. Romanov, V. Tolkach, and I. Y. Smurov, “Simulation of the Dynamics of Two-Phase Plasma Jet in the Atmosphere,” in Proceedings of III International Conference on Plasma Physics and Plasma Technology, 2000, pp. 18-22. [Google Scholar]
  44. R. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, “Simulation of arc root fluctuation in a DC nontransferred plasma torch with three dimensional modeling,” Journal of thermal spray technology, vol. 21, pp. 636-643, 2012. [CrossRef] [Google Scholar]
  45. T. Mohanty, B. Tripathi, T. Mahata, and P. Sinha, “Arc plasma assisted rotating electrode process for preparation of metal pebbles,” in Discharges and Electrical Insulation in Vacuum (ISDEIV), 2014 International Symposium on, 2014, pp. 741-744. [CrossRef] [Google Scholar]
  46. S. Safa and G. Soucy, “Liquid and solution treatment by thermal plasma: a review,” International journal of environmental science and technology, vol. 11, pp. 1165-1188, 2014. [CrossRef] [Google Scholar]
  47. A. Murphy, “Plasma destruction of gaseous and liquid wastes,” Annals of the New York Academy of Sciences, vol. 891, pp. 106-123, 1999. [CrossRef] [Google Scholar]
  48. R. Caliari, F. S. Miranda, D. A. P. Reis, G. P. Filho, L. I. Charakhovski, and A. Essiptchouk, “Plasma torch for supersonic plasma spray at atmospheric pressure,” Journal of Materials Processing Technology, vol. 237, pp. 351-360, 2016/11/01/ (2016) [CrossRef] [Google Scholar]
  49. L. Jia and F. Gitzhofer, “Nano-particle sizing in a thermal plasma synthesis reactor,” Plasma Chemistry and Plasma Processing, vol. 29, p. 497, 2009. [CrossRef] [Google Scholar]
  50. J. Capus, “AP&C opens second plasma atomized powder plant,” Metal Powder Report, vol. 72, pp. 382-383, 2017. [CrossRef] [Google Scholar]
  51. Grenier, “Plasma Atomization gives unique spherical powders,” Metal Powder Report, vol. 52, pp. 34-37, 1997/11/01/ 1997. [Google Scholar]
  52. E. Wosch, A. Prikhodovski, S. Feldhaus, and T. E. Gammal, “Investigations on the rapid solidification of steel droplets in the plasma-rotating-electrode-process,” steel research international, vol. 68, pp. 239-246, 1997. [CrossRef] [Google Scholar]
  53. S. Bogdanov, “Prospects of Production of Granular Composite Materials by Method of the PlasmaCentrifugal Atomization,” Metallurgist, pp. 1-8, 2018. [Google Scholar]
  54. M. J. Tobar, J. M. Amado, J. Montero, and A. Yáñez, “A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material,” Physics Procedia, vol. 83, pp. 606-612, 2016/01/01/ 2016. [CrossRef] [Google Scholar]
  55. G. Chen, P. Tan, S. Y. Zhao, W. W. He, and H. P. Tang, “Spherical Ti-6Al-4V powders produced by gas atomization,” Key Engineering Materials, vol. 704, 2016. [CrossRef] [Google Scholar]
  56. V. Korzhyk, L. Kulak, V. Shevchenko, V. Kvasnitskiy, N. Kuzmenko, X. Liu, et al., “New Equipment for Production of Super Hard Spherical Tungsten Carbide and other High-Melting Compounds Using the Method of Plasma Atomization of Rotating Billet,” in Materials Science Forum, 2017, pp. 1485-1497. [CrossRef] [Google Scholar]
  57. C. Labrecque, R. Angers, R. Tremblay, and D. Dube, “Inverted disk centrifugal atomization of AZ91 magnesium alloy,” Canadian metallurgical quarterly, vol. 36, pp. 169-175, 1997. [CrossRef] [Google Scholar]
  58. M. M. Dewidar, H.-C. Yoon, and J. K. Lim, “Mechanical properties of metals for biomedical applications using powder metallurgy process: a review,” Metals and Materials International, vol. 12, p. 193, 2006. [CrossRef] [Google Scholar]
  59. M. Long and H. Rack, “Titanium alloys in total joint replacement a materials science perspective,” Biomaterials, vol. 19, pp. 1621-1639, 1998. [CrossRef] [Google Scholar]
  60. R. Knight, R. Smith, and D. Apelian, “Application of plasma arc melting technology to processing of reactive metals,” International materials reviews vol. 36, pp. 221-252, 1991. [CrossRef] [Google Scholar]
  61. A. S. Baskoro, R. Tandian, A. Edyanto, and A. S. Saragih, “Automatic Tungsten Inert Gas (TIG) welding using machine vision and neural network on material SS304,” in Advanced Computer Science and Information Systems (ICACSIS), 2016 International Conference on, 2016, pp. 427-432. [CrossRef] [Google Scholar]
  62. D. Ju, X. Sun, X. Jia, Z. Huang, X. Qiao, D. Han, et al., “Experimental investigation of the atomization behavior of ethanol and kerosene in acoustic fields,” Fuel vol. 202, pp. 613-619, 2017/08/15/ (2017) [CrossRef] [Google Scholar]
  63. Y. Xia, L. Khezzar, M. Alshehhi, and Y. Hardalupas, “Droplet size and velocity characteristics of water-air impinging jet atomizer,” International Journal of Multiphase Flow, vol. 94, pp. 31-43, (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.