Open Access
Issue
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 03011
Number of page(s) 9
Section Corrosion and Failure Analysis
DOI https://doi.org/10.1051/matecconf/201926903011
Published online 22 February 2019
  1. Winker, Lng. “International Course of Welding Engineer; part 1: Welding process and equipment”. Institute in the Germany Welding Socity.P398.(2003). [Google Scholar]
  2. ASM Handbook Committee. “Effect of Transformations on Transient Weld Stresses, Section: Fundamentals of Welding; Volume 6 of Welding, Brazing, and Soldering”. Electronic copy of ASM Handbook. (1999). [Google Scholar]
  3. Payares-Asprino, M.,Katsumoto, H, andLiu, S. “Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds” Welding Journal, Vol. 87. P279289. (2008). [Google Scholar]
  4. Henrik Alberg., “Simulation of Welding and Heat Treatment Modelling and Validation”. Ph.D, Division of Computer Aided Design Department of Applied Physics and Mechanical Engineering; Lulea University of Technology. Sweden. (2005). [Google Scholar]
  5. Seok-Jae Lee andChester J. Van Tyne.” Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels”. Volume 43A of Metallurgical and Materials Transactions. P422-427. (2010). [Google Scholar]
  6. Seok-Jae Lee andYoung-Kook Lee.” Finite Element Simulation of Quench Distortion in a LowAlloy Steel Incorporating Transformation Kinetics” .Elsevier Ltd. Acta Materialia 56 (2008). P 1482-1490. (2007). [CrossRef] [Google Scholar]
  7. Capdevila, C.,Caballero, F. García de Andrés, C. “Dependence of Martensite Start Temperature on Fine Austenite Grain Size”. Madrid, Spain. Material Research Group; Department of Physical Metallurgy. http://www.cenim.csic.es (accessed at 3/12/2012). [Google Scholar]
  8. ASM Handbook Committee. “Selection of Wrought Martensitic Stainless Steels; Volume 6 of Welding, Brazing, and Soldering”. Electronic copy of ASM Handbook. (1999). [Google Scholar]
  9. Dupont, J. andKusko, C. “Technical Note: Martensite Formation in Austenitic/Ferritic Dissimilar Alloy Welds”. Welding Journal. P51-56. (2007). [Google Scholar]
  10. Amir Malakizadi. “Simulation of Cooling Behavior and Microstructure Development of PM Steels”. Diploma work No. 42/2010 Department of Materials and Manufacturing technology Chalmers University of Technology. Gothenburg, Sweden Gothenburg. P9-10.(2010). [Google Scholar]
  11. Abdullah, M., andMohammed, A. “Environmental Cracking of Dissimilar Metal Welds”. Saudi Aramco Journal of Technology. P1-2. (2008). [Google Scholar]
  12. Rowe, M.,Nelson, T. andLippold, J. “HydrogenInduced Cracking along the Fusion Boundary of Dissimilar Metal Welds”. Welding Journal Supplement, P31-37(1999). [Google Scholar]
  13. Eslam Ranjbarnodeh andMehdi Farajpour. “Evolution of Plastic Strains in Dissimilar Weld of Stainless Steel to Carbon Steel” Association of Metallurgical Engineers of Serbia (AMES). P23. (2011). [Google Scholar]
  14. Sindhu Thomas. “Analysis of Low Transformation Temperature Welding (LTTW) ConsumablesDistortion Control and Evolution of Residual Stresses”. M.S., Faculty and Board of Trustees of the Colorado School of Mines.P13-15. (2013). [Google Scholar]
  15. Nelson, T.,Lippold, J. andMills, M. “Nature and Evolution of the Fusion Boundary in FerriticAustenitic Dissimilar Weld Metals; Part 1: Nucleation and Growth”. Welding Journal Supplement. P329-337. (1999). [Google Scholar]
  16. Nelson, T.,Lippold, J. andMills, M. “Nature and Evolution of the Fusion Boundary in FerriticAustenitic Dissimilar Weld Metals; Part 2: On-Cooling Transformations” .Welding Journal Supplement. P267-277. (2000). [Google Scholar]
  17. Kou, S. andYang, K. “Mechanisms of Macrosegregation Formation near Fusion Boundary in Welds Made with Dissimilar Filler Metals”. Welding Journal Vol.86. P308. (2007). [Google Scholar]
  18. Kou, S. andYang, K. “Fusion-Boundary Macrosegregation in Dissimilar-Filler Welds”. ASM International, Materials Park, Ohio, USA. P.329-340. (2007). [Google Scholar]
  19. Seok-Jae Leea andYoung-Kook Lee. “Effect of Austenite Grain Size on Martensitic Transformation of a Low Alloy Steel”. Trans Tech Publications Ltd, Switzerland, Materials Science Forum Vols. 475479 .P. 3169-3172. (2005). [Google Scholar]
  20. Hong-Seok Yang andBhadeshia, H. “Austenite Grain Size and the Martensite-Start Temperature”. Scripta Materialia 60.P493-495. (2009). [CrossRef] [Google Scholar]
  21. Prawotoy, Y., Jasmawatil, N. and Sumeru, K. “Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel”. J. Mater. Sci. Technol., 28(5). P 461-466. (2011). [CrossRef] [Google Scholar]
  22. American Petroleum Institute. “API -5 L-2PSL specification for pipe line 44th edition” P10. (2008) [Google Scholar]
  23. John, N. and Ronald, E. “Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator”. U.S. Department of Energy; Office of Nuclear Energy. Idaho National Laboratory. P9-19. (March 2010). [Google Scholar]
  24. American Welding Committee. “Materials and Applications-Part2; Volume 4 of welding handbook, Eighth edition”. American Welding Society. P354-355. (2003). [Google Scholar]
  25. Anand, R., Sudha, C., Thomas Paul, V., SAROJA, S. and Vijayalakshmi, M. “Microstructural Changes in Grade 22 Ferritic Steel Clad Successively with Ni-Based and 9Cr Filler Metals”. Welding Journal; Vol. 89. P56-74. (2010). [Google Scholar]
  26. Anand, R., Sudha, C., Saroja, S., Terrance, A L E. and Vijayalakshmi, M. “Simulation of Carbon Diffusion Profile in Dissimilar Weldment of Ferritic Steels using Diffusion Coefficients Evaluated by Den Broeder‘s Method”. Hradec nad Moravicí; METAL. P1-7. (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.