Open Access
Issue
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 01005
Number of page(s) 5
Section Biochemical and Biomedical Engineering
DOI https://doi.org/10.1051/matecconf/201926801005
Published online 20 February 2019
  1. Mückter, H. Human and animal toxicology of some waterborne pharmaceuticals, Human Pharmaceuticals, Hormones and Fragrances, 2006, 149–241. [Google Scholar]
  2. Triebskorn, R., Casper, H., Scheil, V., and Schwaiger, J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchusmykiss) and common carp (Cyprinuscarpio), Analytical and Bioanalytical Chemistry 387, 2007, 1405–1416. [CrossRef] [Google Scholar]
  3. Mompelat, S., Le Bot, B., and Thomas, O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environment International 35, 2009, 803–814. [CrossRef] [PubMed] [Google Scholar]
  4. Termes T. and Joss A. Human pharmaceuticals, hormones and fragrances, IWA Publishing UK, 2006. [Google Scholar]
  5. Al Aukidy M., Verlicchi P., Jelic A., Petrovic M., and Barcelo D. Monitoring release of pharmaceutical compounds: occurrence andenvironmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy, Science of the Total Environment 438, 15–25. [CrossRef] [Google Scholar]
  6. Kinney C.A., Furlong E.T., Werner S.L., Cahill J.D. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water, Environmental Toxicology Chemistry 25, 2006, 317–326 [CrossRef] [Google Scholar]
  7. Stuart M., Lapworth D., Crane E., Hart A. Review of risk from potential emerging contaminants in UK groundwater, Science of the Total Environment 416, 2012, 1–21. [CrossRef] [Google Scholar]
  8. Pounds N., Maclean S.,Webley M., Pascoe D., and Hutchinson T. Acute and chronic effects of ibuprofen in the molluscPlanorbiscarinatus (Gastropoda: Planorbidae), Ecotoxicology Environmental Safety 70, 2008, 47–52 [CrossRef] [Google Scholar]
  9. Schnell S., Bols N.C., Barata C., Porte C. Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell lineRTL-W1, Aquatic Toxicology 93, 2009, 244–252. [CrossRef] [Google Scholar]
  10. Schreurs R.H., Sonneveld E., Jansen J.H., Seinen W., VanderBurq B. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), and rogen receptor (AR),and progesterone receptor (PR) inreportergene bioassays, Toxicology Sciences 83, 264–272. [CrossRef] [Google Scholar]
  11. Lofrano G., Libralato G., Casaburi A., Siciliano A., Iannece P., Guida M., Pucci L., Dentice E. F., and Carotenuto M. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis, Science of the Total Environment 624, 2018, 461–469 [CrossRef] [Google Scholar]
  12. Tawar S., Sangal V. K., and Verna A. Feasibility of using combined TiO2photocatalysis and RBC process for the treatment of real pharmaceutical wastewater, Journal of Photochemistry and Photobiology A: Chemistry 353, 2018, 263–270. [CrossRef] [Google Scholar]
  13. Dong H., Zeng G., Tang L., Fan C., Zhang C., He X., and He Y. An overview on limitations of TiO2 -based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research 79, 2015, 128–146. [CrossRef] [Google Scholar]
  14. Ahmaruzzaman M. and Gupta V. Rice Hust and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment, Indian Engineering Chemical Research 50(24), 2011, 13589–13613. [CrossRef] [Google Scholar]
  15. Chandrasekhar S. and Pramada P.N. Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature, Adsorption 24, 2006, 12–27. [Google Scholar]
  16. Vieira M.G.A., de Almeida Neto A. F., da Silva M.G.C., Carneiro C. N., and MeloFilho A. A. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system, Brazilian Journal of Chemical Engineering 31 (2), 2014, 519–529. [CrossRef] [Google Scholar]
  17. Sunil K. and Jayant K. Adsorption for Phenol Removal – A Review, International Journal of Scientific Engineering and Research 1(2), 2013, 88–96. [Google Scholar]
  18. Cheah, W. K., Ooi, C. H., and Yeoh, F. Y., Rice husk and rice husk ash reutilization into nanoporous materials for adsorptive biomedical applications: A review, Mesoporous Biomaterials 3, 2016, 27–38. [Google Scholar]
  19. Fernandez, Ledesma E., Rodriguez, Acosta C., Liva, Garrido M., Diaz, Polanco I., and Cazanave, Guarnaluce D. Evaluation of rice husk as an excipient for the pharmaceutical industry, Journal of Materials and Environmental Science 6(1), 2015, 114–118. [Google Scholar]
  20. Patel D. P. Establishment of rice husk by-product as pharmaceutical excipients, World Journal of Pharmaceutical Research 7 (7), 2018, 1790–1820. [Google Scholar]
  21. Sumathi A. and Suriyaprakash T.N.K. Formulation andcharacterization of aloe emugel using rice hulls as an excipient, International Journal of Research in Pharmacology & Pharmacotherapeutics, 2016, 24–31. [Google Scholar]
  22. Barajas J.R. and Pagsuyoin S. Assesment of Moringa-functionalized carbon based biofilter for disinfection through column experiments, Systems and Information Engineering Design Symposium SIEDS, 2017, 5–9. [Google Scholar]
  23. Barajas J.R., Lantayan J., Pagsuyoin S., Bacani F., Santos J., Tan R., Orbecido A., Razon L., and Almendrala M., Water disinfection using moringa protein adsorbed on rice husk ash, Systems and Information Engineering Design Symposium SIEDS, 2016, 16–19. [Google Scholar]
  24. Barajas J., Pagsuyoin S and Lantayan J. Simultaneous removal of anions using moringa-functionalized adsorbents, Systems and Information Engineering Design Symposium SIEDS, 2016, 12–15. [Google Scholar]
  25. Barajas J.R. and Pagsuyoin S. Development of a low-cost water treatment technology using Moringaoleifera seeds, Systems and Information Engineering Design Symposium SIEDS, 2015, 24–28. [Google Scholar]
  26. Katayon S., Megat, Mohd Noor M. J., Asma M., Abdul Ghani L. A., Thamer A. M., Azni I., Ahmad J., Khor B. C., and Suleyman A. M. Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation. Bioresource Technology 97, 2006, 1455–1460. [CrossRef] [Google Scholar]
  27. Jahn, S. A. Using Moringa seeds as coagulants in developing countries. Journal of the American Water Works Association 80, 1988, 43–50. [CrossRef] [Google Scholar]
  28. Suarez, M., Haenni, M., Canarelli, S., Fisch, F., Chodanowski, P., Servis, C., and Mermod, N., Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide, Antimicrobial Agents and Chemotherapy 49(9), 2005, 3847–3857. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.