Issue |
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
|
|
---|---|---|
Article Number | 06011 | |
Number of page(s) | 5 | |
Section | Process for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201926806011 | |
Published online | 20 February 2019 |
Optimization of lead (II) removal in leachates using Moringa oleifera seeds
1
Bicol University, Department of Chemical Engineering, Legazpi City, Albay 4500, Philippines
2
Bicol University, Department of Business Administration, Legazpi City, Albay 4500, Philippines
Corresponding author: jrbarajas12@gmail.com
The absence of comprehensive programs in regulating release of lead to the environment in growing cities situated in developing countries results to widespread intrusion of lead bioaccumulation in their primary sources of food. As a result, a significant increase in lead related diseases continually grows in many low income regions. In an attempt to provide a means of minimizing lead bioaccumulation, we test the extent to which Moringaoleifera seeds (MOS) removes lead (II) ions in aqueous solution. A box-behnken experimental design was used to obtain the optimal conditions in the lead (II) removal process. MOS dosage, initial lead (II) concentration, and pH were found to have significant effects on the percent removal of lead (II) in solution. Actual values of these independent variables were chosen on the basis of preliminary experimental results. Optimum conditions were found to be: MOS dosage 10.0 g/L, initial lead (II) concentration 20.0 ppm, and pH at 5.5. Lead removal using MOS was also performed at optimal conditions. In conclusion, a high lead (II) removal using MOS strongly suggests its potential to be used as a means of treating liquids highly contaminated with lead.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.