Open Access
MATEC Web Conf.
Volume 262, 2019
64 Scientific Conference of the Committee for Civil Engineering of the Polish Academy of Sciences and the Science Committee of the Polish Association of Civil Engineers (PZITB) (KRYNICA 2018)
Article Number 05003
Number of page(s) 8
Section Transportation Engineering
Published online 30 January 2019
  1. M. Budzynski, K. Jamroz, L. Jelinski, and M. Antoniuk, “Why are Trees Still Such a Major Hazard to Drivers in Poland?,” in Transportation Research Procedía, 2016, vol. 14. [Google Scholar]
  2. M. A. Cafiso S., Cava G. La, “Identification of hazard location and ranking of measures to improve safety on local rural roads Final research report,” 2007. [Google Scholar]
  3. J. W. H. Van Petegem and F. Wegman, “Analyzing road design risk factors for run-off-road crashes in the Netherlands with crash prediction models,” J. Safety Res., Vol. 49, no. February, pp. 121–127, 2014. [Google Scholar]
  4. Aashto, Roadside Design Guide. 2011. [Google Scholar]
  5. C. Brodie, C. Jurewicz, L. Steinmetz, C. Phillips, P. Caimey, and G. Veith, Improving Roadside Safety Summary Report. . [Google Scholar]
  6. Yannis G., Best practice for cost effective road safety infrastructure investments. 2008. [Google Scholar]
  7. C. D. Fitzpatrick, C. P. Harrington, M. a. Knodler, and M. R. E. Romoser, “The influence of clear zone size and roadside vegetation on driver behavior,” J. Safety Res., Vol. 49, no. February, pp. 97–104, 2014. [CrossRef] [Google Scholar]
  8. J. Hills G., L., Baguley C., J., Kirk S., Cost and Safety Efficient Design Study of Rural Roads in Developing Countries Final Report Countries. 2002. [Google Scholar]
  9. S. Vardaki, F. Papadimitriou, and P. Kopelias, “Road safety audit on a major freeway: implementing safety improvements,” Eur. Transp. Res. Rev., Vol. 6, no. 4, pp. 387–395, 2014. [CrossRef] [Google Scholar]
  10. J. Lee and F. Mannering, “Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis,” Accid. Anal. Prev., vol. 34, no. 2, pp. 149–61, Mar. 2002. [CrossRef] [Google Scholar]
  11. F. La Torre, P. Saleh, E. Cesolini, and Y. Goyat, “Improving Roadside Design to Forgive Human Errors,” Procedía Soc. Behav. Sei., Vol. 53, pp. 235–244, Oct. 2012. [CrossRef] [Google Scholar]
  12. F. A. Burlacu, O. Tarita-Cimpeanu, and M. Dieu, “The Need for Safer and Forgiving Roads,” Proc. Int. Conf. Road Rail Infrastruct. CETRA, Apr. 2014. [Google Scholar]
  13. N. Jamieson, G. Waibl, and R. Davies, “RR 517 Use of roadside barriers versus clear zones,” 2013. [Google Scholar]
  14. J. M. Holdridge, V. N. Shankar, and G. F. Ulfarsson, “The crash severity impacts of fixed roadside objects,” J. Safety Res., Vol. 36, no. 2, pp. 139–147, Jan. 2005. [CrossRef] [Google Scholar]
  15. AASHTO, Highway Safety Manual. Washington: American Association of State Highway and Transportation Officials, 2010. [Google Scholar]
  16. S. de Ridder, R. van der Horst, and R. Thomson, “D04: Envelope of vehicle and driver response prior to collisions Project ACRONYM: RISER TITLE: Roadside Infrastructure for Safer European Roads,” Sustain. Growth’ Program., 1998. [Google Scholar]
  17. R. Elvik and T. Vaa, The handbook of road safety measures. Elsevier, 2005. [Google Scholar]
  18. S. Gaea and M. Kiec, “Speed Management for Local and Regional Rural Roads,” Transp. Res. Procedía, Vol. 14, pp. 4170–4179, 2016. [Google Scholar]
  19. S. Gaea, M. Kiec, and M. Budzynski, “Evaluating the effectiveness of non-physical speed management measuresWeb of Science Core Collection Full Record,” 2016, pp. 627–633. [Google Scholar]
  20. F. La Torre, G. Williams, R. Thomson, and C. Stefan, “CEDR Call 2012: Safety: Use of Vehicle Restraint Systems SAVeRS Selection of Appropriate Vehicle Restraint Systems Guideline for the selection of the most appropriate Roadside Vehicle Restraint System,” 2015. [Google Scholar]
  21. J. D. M. H. E. ROSS, JR., D. L. SICKING, R. A. ZIMMER, “National Cooperative Highway Research Program Report 350,” 1993. [Google Scholar]
  22. “AASHTO/FHWA Joint Implementation Agreement for the AASHTO Manual for Assessing Safety Hardware, 2015,” p. 2015, 2019. [Google Scholar]
  23. Z. Ren and M. Vesenjak, “Computational and experimental crash analysis of the road safety barrier,” Eng. Fail. Anal., Vol. 12, no. 6, pp. 963–973, Dec. 2005. [CrossRef] [Google Scholar]
  24. M. Borovinsek, M. Vesenjak, M. Ulbin, and Z. Ren, “Simulation of crash tests for high containment levels of road safety barriers,” Eng. Fail. Anal., Vol. 14, no. 8, pp. 1711–1718, Dec. 2007. [CrossRef] [Google Scholar]
  25. I. Kreja and M. L. Wekezer, Jerry W, “Computer simulation of vehicle collisions with road safety devices,” Road Constr., Vol. 8, 2000. [Google Scholar]
  26. M. Vesenjak, M. Borovinšek, and Z. Ren, “Computational simulations of road safety barriers using LS-DYNA,” 2007. [Google Scholar]
  27. M. Klasztomy, D. B. Nycz, and P. Szurgott, “Modelling and simulation of crash tests of N2-W4A category safety road barrier in horizontal concave arc,” Int. J. Crashworthiness, Vol. 21, no. 6, pp. 644–659, Nov. 2016. [CrossRef] [Google Scholar]
  28. M. Klasztomy, K. Zielonka, D. B. Nycz, and P. Posuniak, “Experimental verification of simulation of tb32 crash test for sp-05/2 road safety barrier on horizontal concave arc,” J. Civ. Eng. Environ. Archit., vol. z. 64, nr 2/1, 2017. [Google Scholar]
  29. K. Wilde, K. Jamroz, D. Bruski, S. Burzyhski, J. Chróscielewski, and W. Witkowski, “Numerical study of bus collision in barrier system and truss support structure,” J. Civ. Eng. Environ. Archit., 2016. [Google Scholar]
  30. G. L. Williams, “Whole Life Cost-Benefit Analysis for Median Safety Barriers.” [Google Scholar]
  31. W. Kustra, K. Jamroz, and M. Budzynski, “Safety PLA Support Tool for Road Safety Impact Assessment,” in Transportation Research Procedía, 2016, vol. 14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.