Open Access
Issue
MATEC Web Conf.
Volume 256, 2019
The 5th International Conference on Mechatronics and Mechanical Engineering (ICMME 2018)
Article Number 05003
Number of page(s) 8
Section Computer Aided Design and Electronic Information Technology
DOI https://doi.org/10.1051/matecconf/201925605003
Published online 23 January 2019
  1. R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in IEEE International Conference on Robotics and Automation. Proceedings, 850 (2003) [Google Scholar]
  2. S. A. Holmes, G. Klein, and D. W. Murray, “An O(N(2)) square root unscented Kalman Filter for visual simultaneous localization and mapping,” IEEE Trans Pattern Anal Mach Intell, 31, 7, 1251–1263 (2009) [CrossRef] [Google Scholar]
  3. F. Lu and E. Milios, “Globally Consistent Range Scan Alignment for Environment Mapping,” Auton. Robots, 4, 4, 333–349 (1997) [CrossRef] [Google Scholar]
  4. T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society for Industrial and Applied Mathematics, (2006) [Google Scholar]
  5. A. Howard, M. J. Mataric, and G. Sukhatme, “Relaxation on a mesh: a formalism for generalized localization,” in IEEE International Conference on Intelligent Robots and Systems, 1055–1060 (2001) [Google Scholar]
  6. T. Duckett, S. Marsland, and J. Shapiro, “Fast, On-Line Learning of Globally Consistent Maps,” Auton. Robots, 12, 3, 287–300, (2002) [CrossRef] [Google Scholar]
  7. U. Frese, “Treemap: An O (log n) algorithm for indoor simultaneous localization and mapping,” Auton. Robots, 21, 2, 103–122, (2006) [CrossRef] [Google Scholar]
  8. E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with poor initial estimates,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2006, no. May, 2262–2269, (2006) [Google Scholar]
  9. G. Grisetti, C. Stachniss, and W. Burgard, “Nonlinear constraint network optimization for efficient map learning,” IEEE Trans. Intell. Transp. Syst., 10, 3, 428–439, (2009) [CrossRef] [Google Scholar]
  10. K. Konolige, “Sparse Sparse Bundle Adjustment,” in British Machine Vision Conference, BMVC 2010, Aberystwyth, UK, August 31 - September 3, 2010. Proceedings, 1–11 (2010) [Google Scholar]
  11. R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., 33, 5, 1255–1262 (2017) [CrossRef] [Google Scholar]
  12. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Trans. Robot., 31, 5, 1147–1163 (2015) [CrossRef] [Google Scholar]
  13. G. Klein and D. Murray, “Parallel Tracking and Mapping on a camera phone,” in IEEE International Symposium on Mixed and Augmented Reality, 83–86 (2009) [Google Scholar]
  14. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A general framework for graph optimization,” in IEEE International Conference on Robotics and Automation, 3607–3613 (2011) [CrossRef] [Google Scholar]
  15. G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A Tutorial on Graph-Based SLAM,” IEEE Intell. Transp. Syst. Mag., 2, 4, 31–43, (2011) [CrossRef] [Google Scholar]
  16. G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” IEEE Intell. Transp. Syst. Mag., 2, 4, 31–43, (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.