Issue |
MATEC Web Conf.
Volume 256, 2019
The 5th International Conference on Mechatronics and Mechanical Engineering (ICMME 2018)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 8 | |
Section | Computer Aided Design and Electronic Information Technology | |
DOI | https://doi.org/10.1051/matecconf/201925605003 | |
Published online | 23 January 2019 |
Spare Pose Graph Decomposition and Optimization for SLAM
National CAD Support Software Engineering Research Center, Huazhong University of Science &Technology, Wuhan 430074, China
The graph optimization has become the mainstream technology to solve the problems of SLAM (simultaneous localization and mapping). The pose graph in the graph based SLAM is consisted with a series of nodes and edges that connect the adjacent or related poses. With the widespread use of mobile robots, the scale of pose graph has rapidly increased. Therefore, optimizing a large-scale pose graph is the bottleneck of application of graph based SLAM. In this paper, we propose an optimization method basing on the decomposition of pose graph, of which we have noticed the sparsity. With the extraction of the Single-chain and the Parallel-chain, the pose graph is decomposed into many small subgraphs. Compared with directly processing the original graph, the speed of calculation is accelerated by separately optimizing the subgraph, which is because the computational complexity is increasing exponentially with the increase of the graph’s scale. This method we proposed is very suitable for the current multi-threaded framework adopted in the mainstream SLAM, which separately calculate the subgraph decomposed by our method, rather than the original optimization requiring a large block of time in once may cause CPU obstruction. At the end of the paper, our algorithm is validated with the open source dataset of the mobile robot, of which the result illustrates our algorithm can reduce the one-time resource consumption and the time consumption of the calculation with the same map-constructing accuracy.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.