Open Access

This article has an erratum: [https://doi.org/10.1051/matecconf/201823300033]


Issue
MATEC Web Conf.
Volume 233, 2018
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
Article Number 00003
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/201823300003
Published online 21 November 2018
  1. Staszewski WJ, Lee BC, Mallet L, Scarpa F. Structural health monitoring using scanning laser vibrometry. Part I: Lamb wavesensing. Smart Materials and Structures 2004; 13(2):251-260. [CrossRef] [Google Scholar]
  2. Mallet L, Lee BC, Staszewski WJ, Scarpa F. Structural health monitoring using scanning laser vibrometry. Part II: Lamb waves for damage detection. Smart Materials and Structures 2004; 13(2):261-269. [CrossRef] [Google Scholar]
  3. White C, Li HCH, Whittingham B, Herszberg I, Mouritz AP. Damage detectionin repairs using frequency response techniques. Composite Structures 2009; 87:175-181. [CrossRef] [Google Scholar]
  4. Yam LH, Yan YJ, Jiang JS. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Composite Structures 2003; 60:403-412. [CrossRef] [Google Scholar]
  5. Kessler SS, Spearing SM, Soutis C. Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures 2002; 11:269-278.) [CrossRef] [Google Scholar]
  6. Giurgutiu V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. Journal of Intelligent Material Systems and Structures 2005; 16:291-305. [CrossRef] [Google Scholar]
  7. Crox ford AJ, Wilcox PD, Drinkwater BW, Konstantinidis. Strategies for guided-wave structural health monitoring. In: Proceedings of the Royal Society (2007).p:2961-2981. [CrossRef] [Google Scholar]
  8. Wong CKW, Chiu WK, Rajic N, Galea SC. Can stress wavesbeused for monitoring sub-surface defects in repaired structures; Composite Structures 2006; 76:199-208. [CrossRef] [Google Scholar]
  9. Chiu WK, Galea SC, Koss LL, Rajic N. Damage detection in bondedrepairsusingpiezoceramics. Smart Materials and Structures 2000;9:466-475 [CrossRef] [Google Scholar]
  10. Pavlopoulou S, Soutis C, Manson G. Non-destructive inspection of adhesivelybonded patch repairsusing Lamb waves. Plastics, Rubber and Composites 2012; 41(2):61-68. [CrossRef] [Google Scholar]
  11. W.A. Grandia and C.M. Fortunko, NDE Applications of Air-CoupledUltrasonicTransducers, IEEE ULTRASONICS SYMPOSIUM 1995: 697-709. [Google Scholar]
  12. Wolfgang HILLGER, Lutz BÜHLING, Detlef ILSE, Air-coupled Ultrasonic Testing-Method, System and practical Applications, 11th EuropeanConference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, CzechRepublic: [Google Scholar]
  13. A. Mecke, I. Lee, J.R. Baker jr., M.M. BanaszakHoll, B.G. Orr, Eur. Phys. J. E 14, 7 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Castaings, P. Cawley, R. Farrow, G. Hayward, “Single-sided inspection of composite materials using air-coupled ultrasound”, J. Nondestruct. Eval. 17 (98) 37-45 [Google Scholar]
  15. T.J. Robertson, D.A. Hutchins, D.R. Billson, J.H. Rakels, D.W. Schindel, “Surface metrology using reflected ultrasonic signals in air”, Ultrasonics 39 (2002) 479-486 [CrossRef] [Google Scholar]
  16. Andriejus Demčenko, Egidijus Žukauskas, Rymantas Kažys, Algirdas Voleišis “Investigation of interaction of the Lamb wave with delamination type defect in GLARE composite using air-coupled ultrasonic technique” Forum Acusticum 2005, 2817-2822. [Google Scholar]
  17. E. Žukauskas, V. Cicėnas, R. Kažys, “Application of air - coupled ultrasonic technique for sizing of delamination type defect in multilayered materials”, ISSN 1392-2114 ULTRAGARSAS, Nr.1(54). 2005. [Google Scholar]
  18. R. Kažys, A. Demčenko, E. Žukauskas, E; Mažeika, “Air-coupled ultrasonic investigation of multi-layered composite materials” Ultrasonics 44 (2006) e819-e822 [CrossRef] [Google Scholar]
  19. M. Luukkala, P. Heikkila, J. Surakka, Plate wave resonance - a contactless test method, Ultrasonics 9 (1971) 201-208. [CrossRef] [Google Scholar]
  20. K. Suzuki, K. Huguchi, H. Tanigawa, “A silicon electrostatic ultrasonic transducer”, IEEE Trans. Ultras. Ferroelect. Freq. Contr. (UFFC) 36 (1989) 620-627. [CrossRef] [Google Scholar]
  21. Gordon Dobie, Andrew Spencer, Kenneth Burnhama, S. Gareth Pierce, Keith Worden, Walter Galbraith, Gordon Hayward, “Simulation of ultrasonic lamb wave generation, propagation and detectionfor a reconfigurable air coupled scanner” Ultrasonics 51 (2011) 258-269 [CrossRef] [Google Scholar]
  22. R. Kazys, L. Mazeika, R. Raisutis, E. Zukauskas and R. Sliteris, “Application of Ultrasonic Guided Waves for NDE of Composite Structures”, Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2009, 236-239. [Google Scholar]
  23. E Blomme, D. Bulcaen, F. Declercq, “Air-coupled ultrasonic NDE: an experiment in the Frequency range 750 KHz - 2 MHz”, NDT&E International 35 (2002), 417-426 [CrossRef] [Google Scholar]
  24. Rymantas Jonas Kazys, Reimondas Sliteris, Justina Sestoke, “Application of PMN-32PT piezoelectric crystals for novel air-coupled ultrasonic transducers” Physics Procedia 70 (2015) 896-900. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.