Open Access
Issue
MATEC Web Conf.
Volume 231, 2018
12th International Road Safety Conference GAMBIT 2018 - “Road Innovations for Safety - The National and Regional Perspective”
Article Number 01014
Number of page(s) 9
Section Safe road infrastructure
DOI https://doi.org/10.1051/matecconf/201823101014
Published online 16 November 2018
  1. European Standard EN 1317-1-5 (2010) [Google Scholar]
  2. British Standard PD CEN/TR 16303-1-5 (2012) [Google Scholar]
  3. J.O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technology Corporation, 2006) [Google Scholar]
  4. LS-DYNA Keyword User's Manual (Livermore Software Technology Corporation, 2015) [Google Scholar]
  5. K. Jamroz, S. Burzyński, W. Witkowski, K. Wilde, Numerical methods for the assessment of bridge safety barriers, in: M. Kleiber, T. Burczyński, K. Wilde, J. Gorski, K. Winkelmann, Ł. Smakosz (Eds.), Adv. Mech. Theor. Comput. Interdiscip. Issues, 1st ed., pp. 231-234 (CRC Press, 2016) [CrossRef] [Google Scholar]
  6. W. Borkowski, Z. Hryciów, P. Rybak, J. Wysocki, Numerical simulation of the standard TB11 and TB32 tests for a concrete safety barrier, J. KONES Powertrain Transp. 17 pp. 63-71 (2010) [Google Scholar]
  7. M. Borovinšek, M. Vesenjak, M. Ulbin, Z. Ren, Simulation of crash tests for high containment levels of road safety barriers, Eng. Fail. Anal. 14 pp. 1711-1718 (2007). doi:10.1016/J.ENGFAILANAL.2006.11.068 [CrossRef] [Google Scholar]
  8. K. Wilde, K. Jamroz, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, Numerical simulations of bus crash-test with barrier and truss supporting structure (in Polish), J. Civ. Eng. Environ. Archit. 63 pp. 455-467 (2016) [Google Scholar]
  9. M. Klasztorny, D.B. Nycz, P. Szurgott, Modelling and simulation of crash tests of N2-W4-A category safety road barrier in horizontal concave arc, Int. J. Crashworthiness. 21 pp. 644-659 (2016). doi:10.1080/13588265.2016.1212962 [CrossRef] [Google Scholar]
  10. K. Wilde, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, Numerical crash analysis of the cable barrier, in: J. Awrejcewicz, M. Kaźmierczak, J. Mrozowski, P. Olejnik (Eds.), DSTA-2017 Conf. Books, pp. 555-566 (Department of Automation, Biomechanics and Mechatronics, 2017) [Google Scholar]
  11. M. Klasztorny, K. Zielonka, D.B. Nycz, P. Posuniak, R.K. Romanowski, Experimental validation of simulated TB32 crash tests for SP-05/2 barrier on horizontal concave arc without and with composite overlay, Arch. Civ. Mech. Eng. 18 pp. 339-355 (2018). doi:10.1016/J.ACME.2017.07.007 [CrossRef] [Google Scholar]
  12. K. Wilde, K. Jamroz, D. Bruski, M. Budzyński, S. Burzyński, J. Chroscielewski, W. Witkowski, Curb-to-Barrier Face Distance Variation an a TB51 Bridge Barrier Crash Test Simulation, Arch. Civ. Eng. 63 pp. 187-199 (2017). doi:https://doi.org/10.1515/ace-2017-0024 [CrossRef] [Google Scholar]
  13. P. Baranowski, J. Malachowski, J. Janiszewski, J. Wekezer, Detailed tyre FE modelling with multistage validation for dynamic analysis, Mater. Des. 96 pp. 68-79 (2016). doi:10.1016/J.MATDES.2016.02.029 [Google Scholar]
  14. P. Baranowski, J. Malachowski, L. Mazurkiewicz, Numerical and experimental testing of vehicle tyre under impulse loading conditions, Int. J. Mech. Sci. 106 pp. 346-356 (2016). doi:10.1016/J.IJMECSCI.2015.12.028 [CrossRef] [Google Scholar]
  15. P. Baranowski, J. Janiszewski, J. Małachowski, Tire rubber testing procedure over a wide range of strain rates, J. Theor. Appl. Mech. 55 pp. 727-739 (2017). doi:10.15632/jtam-pl.55.2.727 [CrossRef] [Google Scholar]
  16. P. Baranowski, J. Malachowski, Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving, Bull. Polish Acad. Sci. Tech. Sci. 63 pp. 867-878 (2015). doi:10.1515/bpasts-2015-0099 [Google Scholar]
  17. J.C. Kennedy, C.A. Plaxico, C.R. Miele, Development of an NCHRP Report 350 TL-3 New Jersey Shape 50-Inch Portable Concrete Barrier (Ohio Department of Transportation, 2006) [Google Scholar]
  18. R.W. Bielenberg, R.K. Faller, T.E. Quinn, D.L. Sicking, Development of a retrofit, low-deflection, temporary concrete barrier system. Research Project Number TPF-5(193) Suppl. #15 NDOR Sponsoring Agency Code RPFP-WISC-4 (Midwest Roadside Safety Facility, 2014) [Google Scholar]
  19. T. Belytschko, W. Liu, B. Moran, Nonlinear finite elements for continua and structures (Wiley, 2000) [Google Scholar]
  20. Y. Wu, J.E. Crawford, J.M. Magallanes, Performance of LS-DYNA Concrete Constitutive Models, in: 12th Int. LS-DYNA Users Conf., (2012) [Google Scholar]
  21. H. Jiang, J. Zhao, Calibration of the continuous surface cap model for concrete, Finite Elem. Anal. Des. 97 pp. 1-19 (2015). doi:10.1016/J.FINEL.2014.12.002 [CrossRef] [Google Scholar]
  22. Y.D. Murray, Users Manual for LS-DYNA Concrete Material Model 159. Report no. FHWA-HRT-05-062 (Federal Highway Administration, 2007) [Google Scholar]
  23. Y.D. Murray, A. Abu-Odeh, R. Bligh, Evaluation of LS-DYNA Concrete Material Model 159. Report no. FHWA-HRT-05-063 (Federal Highway Administration, 2007) [Google Scholar]
  24. Y.D. Murray, B.A. Lewis, Numerical Simulation of Damage in Concrete. (APTEK INC COLORADO SPRINGS CO, 1995) [Google Scholar]
  25. L.E. Schwer, Y.D. Murray, A three-invariant smooth cap model with mixed hardening, Int. J. Numer. Anal. Methods Geomech. 18 pp. 657-688 (1994). doi:10.1002/nag.1610181002 [CrossRef] [Google Scholar]
  26. W.L. Oberkampf, M.F. Barone, Measures of agreement between computation and experiment: Validation metrics, J. Comput. Phys. 217 pp. 5-36 (2006). doi:10.1016/J.JCP.2006.03.037 [CrossRef] [Google Scholar]
  27. M. Mongiardini, M.H. Ray, M. Anghileri, Development of a Software for the Comparison of Curves During the Verification and Validation of Numerical Models, in: 7th Eur. LS-DYNA Conf., (2009) [Google Scholar]
  28. M.H. Ray, M. Mongiardini, C.A. Plaxio, M. Anghileri, NCHRP Web-Only Document 179: Procedures for Verification and Validation of Computer Simulations Used for Roadside Safety Applications (Transportation Research Board, 2010) [Google Scholar]
  29. ROBUST PROJECT: https://www.vegvesen.no/s/robust/Computational_mechanics/Vehicle models/, (2018) [Google Scholar]
  30. K. Wilde, D. Bruski, S. Burzyński, J. Chróścielewski, Ł. Pachocki, W. Witkowski, On the validation of the LS-DYNA Geo Metro numerical model (to be published), in: 64 Sci. Conf. Krynica Zdrój, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.