Open Access
Issue
MATEC Web Conf.
Volume 217, 2018
2018 International Conference on Vibration, Sound and System Dynamics (ICVSSD 2018)
Article Number 03003
Number of page(s) 8
Section Sound
DOI https://doi.org/10.1051/matecconf/201821703003
Published online 17 October 2018
  1. Wan, S., Li, X., Chen, W., & Hong, J. (2018). Investigation on milling chatter identification at early stage with variance ratio and Hilbert-Huang transform. International Journal of Advanced Manufacturing Technology, 95(9-12), 35633573. https://doi.org/10.1007/s00170-017-1410-y [Google Scholar]
  2. Wan, S., Li, X., Chen, W., & Hong, J. (2018). Investigation on milling chatter identification at early stage with variance ratio and Hilbert-Huang transform. International Journal of Advanced Manufacturing Technology, 95(9-12), 35633573. https://doi.org/10.1007/s00170-017-1410-y [Google Scholar]
  3. Abellan Nebot J and Romero Subiro’ n F (2010) A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology 47: 237–257. [CrossRef] [Google Scholar]
  4. Ratava, J., Lohtander, M., & Varis, J. (2017). Tool condition monitoring in interrupted cutting with acceleration sensors. Robotics and Computer-Integrated Manufacturing, 47(November), 70–75. https://doi.org/10.1016/j.rcim.2016.11.008 [CrossRef] [Google Scholar]
  5. Ahrens, M., Dagen, M., Denkena, B., & Ortmaier, T. (2016). An Active Damping Method for Chatter Vibration in Plunge Grinding Using Electromagnetic Actuators. Procedia CIRP, 46, 197–200. https://doi.org/10.1016/j.procir.2016.03.200 [CrossRef] [Google Scholar]
  6. Samanta B, Al-Balushi KR and Al-Araimi SA (2006) Artificial neural networks and genetic algorithm for bearing fault detection. Soft Computing A Fusion of Foundations, Methodologies and Applications 10: 264–271. [Google Scholar]
  7. Yao Z, Mei D and Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. Journal of Materials Processing Technology 210: 713–719. [Google Scholar]
  8. Wan, S., Li, X., Chen, W., & Hong, J. (2018). Investigation on milling chatteridentification at early stage with variance ratio and Hilbert-Huang transform.International Journal of Advanced Manufacturing Technology, 95(9-12), 3563–3573. https://doi.org/10.1007/s00170-017-1410-y [CrossRef] [Google Scholar]
  9. RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ [Google Scholar]
  10. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research 14(Aug):2349-2353. [Google Scholar]
  11. Chollet, Franc¸ois. Keras. https://github.com/fchollet/keras, 2015. [Google Scholar]
  12. TensorFlow: Large-scale machine learning on heterogeneous svstems, 2015, Software available from tensorflow.org. [Google Scholar]
  13. Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source DeepLearning Toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discoverv and Data Mining (KDD ‘16). ACM, New York, NY, USA, 2135–2135. DOI: https://doi.org/10.1145/2939672.2945397 [CrossRef] [Google Scholar]
  14. Cao, H., Zhou, K., & Chen, X. (2015). Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. International Journal of Machine Tools and Manufacture, 92, 52–59. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.