Open Access
MATEC Web Conf.
Volume 217, 2018
2018 International Conference on Vibration, Sound and System Dynamics (ICVSSD 2018)
Article Number 04001
Number of page(s) 8
Section Others
Published online 17 October 2018
  1. P. Wu, G. Vazquez, N. Mikstas, S. Krishnan, and U. Kim, “Aquasift: A low-cost,hand-held potentiostat for point-of-use electrochemical detection of contaminantsin drinking water,” 2017 IEEE Glob. Humanit. Technol. Conf., pp. 1–4, 2017 [Google Scholar]
  2. B. K. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, “A review on variouselectrochemical techniques for heavy metal ions detection with different sensingplatforms,” Biosens. Bioelectron., Vol. 94, no. January, pp. 443–455, 2017. [CrossRef] [Google Scholar]
  3. F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: A review,”J.Environ. Manage., Vol. 92, No. 3, pp. 407–418, 2011 [Google Scholar]
  4. M. Nizar et al., “An Electroanalytical Instrument Equipped with WirelessCommunication Network and Graphical User Interface for Real-time MonitoringWastewater Status from Batik Industry,” J. Mech. Eng. Vo l SI, Vol. 4, No. 2, pp.153–170, 2017. [Google Scholar]
  5. M. B. Gumpu, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan, “A reviewon detection of heavy metal ions in water - An electrochemical approach,” SensorsActuators, B Chem., Vol. 213, No. 2015, pp. 515–533, 2015 [CrossRef] [Google Scholar]
  6. Ametek Scientific Instrument, “A Review of Techniques for Electrochemical Analysis,” Princeton Applied Research. [Online]. Available: [Google Scholar]
  7. T. Arevalo-Ramirez, C. C. Torres, A. C. Rosero, and P. Espinoza-Montero, “Lowcost potentiostat: Criteria and considerations for its design and construction,” Proc.2016 IEEE ANDESCON, ANDESCON 2016, 2017. [Google Scholar]
  8. D. Harvey, Modern Analytical Chemistry. 2000. [Google Scholar]
  9. G. N. Meloni, “Building a microcontroller based potentiostat: A inexpensive andversatile platform for teaching electrochemistry and instrumentation,” J. Chem.Educ., Vol. 93, No. 7, pp. 1320–1322, 2016. [CrossRef] [Google Scholar]
  10. A. Ainla, M. P. S. Mousavi, M. Tsaloglou, J. Redston, G. Bell, and M. T. Ferna, “Open-Source Potentiostat for Wireless Electrochemical Detection withSmartphones,” Anal. Chem., 2018. [Google Scholar]
  11. C. Y. Huang, H. T. Huang, and R. T. Yuan, “Design of a portable mini potentiostat for electrochemical biosensors,” Proc. 2017 IEEE 2nd Adv. Inf. Technol. Electron.Autom. Control Conf. IAEAC 2017, pp. 200–203, 2017. [Google Scholar]
  12. D. L. Agulto, J. C. A. Guinto, L. K. G. Palomo, J. F. Villaverde, and M. A. C. Fabro, “Design of Microcontroller-based Potentiostat with Performance Validation using Auto Lab Eco Chemie Dummy Cell 2.” [Google Scholar]
  13. A. A. Rowe et al., “Cheapstat: An open-source, ‘do-it-yourself’ potentiostat foranalytical and educational applications,” PLoS One, Vol. 6, No. 9, p. 7, 2011. [Google Scholar]
  14. M. D. M. M. Dryden and A. R. Wheeler, “DStat: A Versatile, Open-SourcePotentiostat for Electroanalysis and Integration,” PLoS One, Vol. 10, No. 10, p.e0140349, Oct. 2015. [CrossRef] [Google Scholar]
  15. K. Christidis, K. Gow, P. Robertson, and P. Pollard, “Intelligent potentiostat foridentification of heavy metals in situ,” Rev. Sci. Instrum., Vol. 77, No. 1, pp. 1–4,2006. [CrossRef] [Google Scholar]
  16. P. Bezuidenhout, S. Smith, K. Land, and T. H. Joubert, “A low-cost potentiostatfor point-of-need diagnostics,” in 2017 IEEE AFRICON: Science, Technology andInnovation for Africa, AFRICON 2017, 2017, pp. 83–87. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.