Open Access
MATEC Web Conf.
Volume 202, 2018
2018 International Conference on Aeronautical, Aerospace and Mechanical Engineering (AAME 2018)
Article Number 01004
Number of page(s) 5
Section Material Performance Testing and Analysis
Published online 26 September 2018
  1. Timoshenko. S. (1925). Analysis of Bi-Metal Thermostats. Journal of the Optical Society of America. 11, pp. 233–255 [CrossRef] [Google Scholar]
  2. Tummala, R. (2001). Fundamentals of microsystems packaging . McGraw Hill Professional. [Google Scholar]
  3. Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82–85. doi:10.1109J/PROC.1998.658762 [CrossRef] [Google Scholar]
  4. Sujan, D., Woldemichael, D. E., Murthy, M. V. V., & Seetharamu, K. N. (2011). Effect of bond layer on bimaterial assembly subjected to uniform temperature change. Journal of Electronic Packaging, Transactions of the ASME, 133(4) doi:10.1115/1.4005294 [Google Scholar]
  5. Brown, W. D. (1998). Advanced Electronic Packaging with Emphasis on Multichip Modules. ed. [Google Scholar]
  6. Sujan, D., Pang, X. B., Rahman, M. E., & Reddy, M. M. (2014). Performance of solder bond on thermal mismatch stresses in electronic packaging assembly doi:10.4028/ [Google Scholar]
  7. Huang, Y.W., Lin, Y. M., Zhan. C.J. (2013). Assembly of 3D Chip Stack with 30µm-Pitch Micro Interconnects Using Novel Arrayed-Particles Anisotropic Conductive Film. Proceedings of the 2013 Electronic Components and Technology Conference, pp. 71–76. [CrossRef] [Google Scholar]
  8. Suhir, E. (2018). Analytical thermal stress model for a typical flip-chip (FC) package design. Journal of Materials Science: Materials in Electronics, 29(4), 2676–2688. doi:10.1007/s10854-017-8194-6 [CrossRef] [Google Scholar]
  9. Suhir, E. (2014). Thermal stress in through-silicon-vias: Theory-of-elasticity approach. Microelectronics Reliability, 54(5), 972–977. doi:10.1016j/.microrel. 2014.01.004 [CrossRef] [Google Scholar]
  10. Gao, L., Chen, X., & Gao, H. (2015). Interfacial thermal stresses in ACF bonding assembly. Microelectronics Reliability, 55(7), 1089–1096. doi:10.1016j/.microrel.2015.04.004 [CrossRef] [Google Scholar]
  11. Suhir, E. (1989). Interfacial stresses in bimetal thermostats. Journal of Applied Mechanics, Transactions ASME, 56(3), 595–600. doi:10.1115/1.3176133 [CrossRef] [Google Scholar]
  12. Suhir, E. (1986). CALCULATED THERMALLY INDUCED STRESSES IN ADHESIVELY BONDED AND SOLDERED ASSEMBLIES. Paper presented at the 383–392. [Google Scholar]
  13. Sujan, D., Murthy, M. V. V., Seetharamu, K. N., & Hassan, A. Y. (2005). Complete model for interfacial stresses of a two layered structure. Paper presented at the Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems EuroSimE 2005, 2005 454–461. doi:10.1109/ESIME.2005.1502848 [Google Scholar]
  14. Sujan, D., Murthy, M. V. V., & Seetharamu, K. N. (2011). Improved tri-layered interfacial stress model with the effect of different temperatures in the layers. Archive of Applied Mechanics, 81(5), 561–568. doi:10.1007/s00419-010-0437-4 [CrossRef] [Google Scholar]
  15. Sujan, D., Murthy, M. V. V., Seetharamu, K. N., & Hassan, A. Y. (2005). Engineering model for interfacial stresses of a heated bimaterial structure with bond material used in electronic packages. Journal of Microelectronics and Electronic Packaging, 2(2), 132–141. doi:10.4071/1551-4897-2.2.132 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.