Issue |
MATEC Web Conf.
Volume 202, 2018
2018 International Conference on Aeronautical, Aerospace and Mechanical Engineering (AAME 2018)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 5 | |
Section | Material Performance Testing and Analysis | |
DOI | https://doi.org/10.1051/matecconf/201820201004 | |
Published online | 26 September 2018 |
Bond Layer Properties and Geometry Effect on Interfacial Thermo-mechanical Stresses in Bi-material Electronic Packaging Assembly
Faculty of Engineering and Science, Curtin University Malaysia CDT 250, 98009 Miri, Sarawak, Malaysia
Thermo-mechanical mismatch stress is one of the reasons for mechanical as well as functional failure between two or more connected devices. In electronic packaging, two or more plates or layers are bonded together by an extremely thin layer. This thin bonding layer works as an interfacial stress compliance which is expected to alleviate the interfacial stresses between the layers. Therefore, it is very important to identify the suitable interfacial bonding characteristics for reducing the interfacial thermal mismatch stresses to maintain the structural integrity. This research work examines the influences of bond layer properties and geometry on the interfacial shearing and peeling stresses in a bi-material assembly. In this study a closed form model of bi-layered assembly is used with the up-to-date bond layer shear stress compliance expression. The key bond layer properties namely Young’s modulus, coefficient of thermal expansion, Poisson’s ratio, and physical parameters like temperature and thickness are considered for interfacial stress evaluation. It is observed that the Young’s modulus, the thickness and the temperature of the bond layer have significant influence on the interfacial shearing and peeling stress. The results obtained are likely to be useful in designing bond layer properties in microelectronics and photonics applications.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.