Open Access
Issue
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 10002
Number of page(s) 6
Section Civil Engineering
DOI https://doi.org/10.1051/matecconf/201819710002
Published online 12 September 2018
  1. R. McCaffrey, P. Zwick, Y. Bock, L. Prawiradirdjo, F. Genrich, C. Stevens, S. P. Suharya, Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling J. Geophys. Res., 105 (B12), 28,363-28,376, (2000) [CrossRef] [Google Scholar]
  2. M. Sørensen, K. Atakan, Continued earthquake hazard in Northern Sumatra: Potential effects of a future earthquake EOS, Trans. American Geophysical Union, 89 (14), 133-134 (2008) [CrossRef] [Google Scholar]
  3. O. Bellier, S. Sébrier, T. Pramumijoyo, H. Beaudouin, I. Harjono, Bahar, O. Fomi, Paleoseimicity and seismic hazard along the Ornat Sumatran Fault (Indonesia) J. Geodyn., 24, 169-183 (1997) [CrossRef] [Google Scholar]
  4. M. Petersen, J. Dewey, S. Hartzell, C. Mueller, S. Hansen, A. Frankel, K. Rukstales, Probabilistic seismic hazard analysis for Sumatra, Indonesia and across the southern Malaysian peninsula Tectonophysics 390, 141-158 (2001) [CrossRef] [Google Scholar]
  5. B. Siemon, D. Ploethner, J. Pielawa, Hydrogeological Reconnaissance Survei in the Province Nanggroe Aceh Darussalam Northern Sumatra, Indonesia Survei Area: Banda Aceh / Aceh Besar 2005, Report C 1, BGR (Federal Institute for Geosciences and Natural Resources) (2006) [Google Scholar]
  6. C. Brebbia, D. Beskos, E. Kausel. The Kobe earthquake: geodynamical aspects (Computational Mechanics Publications, Southampton, 1996) [Google Scholar]
  7. B. Setiawan, Site Specific Ground Response Analysis for Quantifying Site Amplification at A Regolith Site Ind. J. on Geoscience 4 (3), 159-167, (2017) [Google Scholar]
  8. B. Setiawan, M. Jaksa, M. Griffith, D. Love, Seismic site classification based on constrained modeling of measured HVSR curve in regolith sites Soil Dyn. Earthq. Eng., 110, 244-261 (2018) [CrossRef] [Google Scholar]
  9. M. Irsyam, S. Widiyantoro, D. Natawidjaja, I. Meilano, A. Rudyanto, S. Hidayati, W. Triyoso, N. Hanifa, D. Djarwadi, L. Faizal, S. Sunarjito, Peta Sumber & Bahaya Gempa Indonesia tahun 2017. Pusat Penelitian & Pengembangan Perumahan dan Permukiman, Badan Penelitian & Pengembangan, Kementerian Pekerjaan Umum & Perumahan Rakyat ISBN: 978-602-5489-01-3, (2017) [Google Scholar]
  10. E. Priolo, M. Poli, G. Laurenzano, A. Vuan, C. Barnaba, Site response estimation in the Vittorio Veneto area (NE Italy), Part 2: mapping the local seismic effects in the urban settlement Boll. Geof. Teor. Appl., 49, (3-4), 387-400 (2008) [Google Scholar]
  11. J. Bardet, K. Ichii, C. Lin, EERA a computer program for Equivalent-linear Earthquake site Response Analyses of layered soil deposits (Department of Civil Engineering, University of Southern California, 2000) [Google Scholar]
  12. B. Setiawan, M. Jaksa, M. Griffith, D. Love, An investigation of local site effects in Adelaide, south Australia: learning from the past Boll. Geof. Teor. Appl., 59 (1), 27-46 (2018) [Google Scholar]
  13. P. Schnabel, J. Lysmer, H. Seed, A computer program for earthquake response analysis of horizontally layered sites, Earthqukae Engineering Research Center EERC Report (University of California, Berkeley, California 1972) [Google Scholar]
  14. R. Borja, C-H. Lin, K. Sama, G. Masada, Modelling non-linear ground response of non-liquefiable soils Earthq. Eng. Struct. Dyn., 29, 63-83 (2000) [CrossRef] [Google Scholar]
  15. U. Polom, I. Arsyad, H. Kumpel, Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin Sumatra. Adv. Geosci., 14, 135-140 (2008) [CrossRef] [Google Scholar]
  16. E. Uthayakumar, E. Naesgaard, Ground response analysis for seismic design in Fraser River Delta, British Columbia. 13th World Conference on Earthquake Engineering (2004) [Google Scholar]
  17. M. Mucciarelli, A. Masi, M. R. Gallipoli, P. Harabaglia, M. Vona, F. Ponzo, M. Dolce, Analysis of RC Building Dynamic Response and Soil-Building Resonance Based on Data Recorded during a Damaging Earthquake (Molise, Italy, 2002) Bull. Seism. Soc. Am., 94 (5), 1943-1953 (2004) [CrossRef] [Google Scholar]
  18. A. Masi, M. Vona, Experimental and numerical evaluation of the fundamental period of undamaged and damaged RC framed buildings Bull. Earthq. Eng. 8, 643-656 (2010) [CrossRef] [Google Scholar]
  19. S. Kramer, Geotechnical earthquake engineering (Prentice Hall, Upper Saddle River, New Jersey, 1996) [Google Scholar]
  20. S. Sugiarto, T. Miwa, H. Sato, T. Morikawa, Explaining differences in acceptance determinants towards congestion charging policies in Indonesia and Japan J. Urban Plan. Dev., 143 (2): 1-12 (2016) [Google Scholar]
  21. S. Sugiarto, T. Miwa, T. Morikawa, Inclusion of latent constructs in utilitarian resource allocation model for analyzing revenue spending options in congestion charging policy Transp. Res. Part A: Policy & Practice, 103, 36-53 (2017) [CrossRef] [Google Scholar]
  22. C. Toşa, H. Sato, T. Morikawa, T. Miwa, Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania J. Transp. Geogr., 68, 78-93 (2018) [CrossRef] [Google Scholar]
  23. S. Sugiarto, T. Miwa, T. Morikawa Recursive bivariate response models of the ex-ante intentions to link perceived acceptability among charge and refund options for alternative road pricing schemes Transp. Lett., 10 (1), 52-63 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.