Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 6 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819710002 | |
Published online | 12 September 2018 |
Site response analysis for estimating seismic site amplification in the case of Banda Aceh - Indonesia
1
Syiah Kuala University, Department of Civil Engineering, Faculty of Engineering, 23111 Banda Aceh, Indonesia
2
Syiah Kuala University, Program Study of Geological Engineering, Faculty of Engineering, 23111 Banda Aceh, Indonesia
* Corresponding author: bambang.setiawan@unsyiah.ac.id
The city of Banda Aceh is potentially exposed to a significant seismic hazard of seismic site amplification. Estimation of seismic site amplification of the city is urgently required for any mitigation efforts as the city is founded on a thick, soft layer. This study aims to estimate seismic site amplification of Banda Aceh's soil. Analytical models have demonstrated that they can simulate reasonably well the seismic ground motions amplification. The most widely used model is the equivalent linear approach. The approach computes the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional soil column. As aforementioned, this study focuses on Banda Aceh-Indonesia which is founded on thick alluvium. Three actual historical time histories and three developed sub-surface models were used to estimate the seismic site amplification of Banda Aceh's soft soil. The used time histories are of 2012 M8.1 Simeulue earthquake, 2013 M6.0 Mane-Geumpang earthquake and 2013 M6.2 Bener Meriah earthquake. Three sub-surface models of three separate sites across the city of Banda Aceh were developed. The site response analysis results reveal the ground motions amplification of Banda Aceh's soils of up to 4.3. Thus, applying the seismic site amplification for structural design at Banda Aceh can be further works.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.