Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 08011
Number of page(s) 9
Section Theoretical and applied mathematics in engineering
Published online 14 March 2018
  1. B. Poddar, V. Giurgiutiu, Scattering of Lamb waves from a discontinuity: An improved analytical approach. W. Motion 65, 79-91 (2016) [CrossRef] [Google Scholar]
  2. B. Poddar, V. Giurgiutiu, Complex modes expansion with vector projection using power flow to simulate Lamb waves scattering from horizontal cracks and disbonds. J. Ac. Soc. of America 140, 2123-2133 (2016) [CrossRef] [Google Scholar]
  3. J. L. Rose, Ultrasonic guided waves in solid media. (Cambridge University Press,2014) [Google Scholar]
  4. E. Moreno, P. Acevedo, Thickness measurement in composite materials using Lamb waves. Ultrasonics 35, 581-586 (1998) [CrossRef] [Google Scholar]
  5. M. Šofer, P. Ferfecki, P. Šofer, Experimental construction of Lamb wave dispersion curves in plates. Conference paper, EAN 2017, 55th International Conference on Experimental Stress Analysis (2017) [Google Scholar]
  6. Z. Lašová, R. ZemčÍk, Determination of group velocities of Lamb waves in unidirectional carbon-epoxy plate. Conference paper, EAN 2017 - 55th International Conference on Experimental Stress Analysis (2017) [Google Scholar]
  7. P. Hora, O. Červená, Determination of Lamb wave dispersion curves by means of Fourier transform. App. Mech. And Com. Mech. 6, 5-16 (2012) [Google Scholar]
  8. M. H. Sadd, Wave motion and vibration in continuous media. Univ. Of RI, Dept. Of Mech. Engr., Kingston (1990) [Google Scholar]
  9. J. D. Achenbach, Wave propagation in elastic solids. New York: North Holland (1984) [Google Scholar]
  10. M. Šofer, P. Ferfecki, P., J. Neugebauer, Effect of the shape of geometric discontinuity on nature of Rayleigh wave back reflection. Conference paper, EAN 2016, 54th International Conference on Experimental Stress Analysis (2016) [Google Scholar]
  11. R. Halama, M. Fusek, Z. Poruba, Influence of mean stress and stress amplitude on uniaxial and biaxial ratcheting of ST52 steel and its prediction by the AbdelKarim–Ohno model. Int. J. of Fat. 91, 313-321 (2016) [Google Scholar]
  12. M. Handrik, P. Kopas, V. Baniari, M. Vasko, M. Saga, Analysis of stress and strain of fatigue specimens localised in the cross-sectional area of the gauge section testing on bi-axial fatigue machine loaded in the high-cycle fatigue region. Procedia Engineering 177, 516-519 (2017) [CrossRef] [Google Scholar]
  13. P. Kopas, M. Saga, V. Baniari, M. Vasko, M. Handrik, A plastic strain and stress analysis of bending and torsion fatigue specimens in the low-cycle fatigue region using the finite element methods. Procedia Engineering 177, 526-531 (2017) [CrossRef] [Google Scholar]
  14. P. Kopas, M. Blatnický, M. Sága, M. Vaško, Identification of mechanical properties of weld joints of AlMgSi07.F25 aluminium alloy, Metalurgija 56, 99-102 (2017) [Google Scholar]
  15. P. Kopas, L. Jakubovičová, M. Vaško, M. Handrik, Fatigue resistance of reinforcing steel bars, Procedia Engineering 136, 193-197 (2016) [CrossRef] [Google Scholar]
  16. V. Baniari, M. Blatnicka, M. Sajgalik, M. Vasko, M. Saga, Measurement and numerical analyses of residual stress distribution near weld joint, Procedia Engineering 192, 22-27 (2017) [CrossRef] [Google Scholar]
  17. R. Kocich, L. Kunčická, A. Macháčková, M. Šofer, Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Materials & Design 123, 137-146 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.