Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 08012
Number of page(s) 9
Section Theoretical and applied mathematics in engineering
Published online 14 March 2018
  1. T. Yamaguchi, S. Hashimoto, Fast crack detection method for large-size concrete surface images using percolation-based image processing. Machine Vision and Applications 21 (5), 797-809 (2010). [CrossRef] [Google Scholar]
  2. H. Miyazaki, Y. Nomura, H. Sugai, M. Iijima, S. Inasawa, H. Kamiya, Liquid penetration as a simple detection method for structural differences in particulate films prepared from slurries. Powder Technology 303, 59-67 (2016) [CrossRef] [Google Scholar]
  3. X. Li, H. Jiang, G. Yin, Detection of surface crack defects on ferrite magnetic tile, Journal of Sound and Vibration 375 (4), 200-216 (2016) [CrossRef] [Google Scholar]
  4. N. Boaretto, T.M. Centeno, Automated detection of welding defects in pipelines from radiographic images DWDI. NDT & E International, [Google Scholar]
  5. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method. Ultrasonics 69, 225-235 (2016) [CrossRef] [Google Scholar]
  6. G.M. Owolabi, A.S.J. Swamidas, R. Seshadri, Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration 265, 1-22 (2003) [Google Scholar]
  7. P. Yamuna, K. Sambasivarao, Vibration Analysis of Beam With Varying Crack Location. International Journal of Engineering Research and General Science 2 (6), ISSN 2091-2730, (2014) [Google Scholar]
  8. K. Sokół, Linear and nonlinear vibrations of a column with an internal crack. J. Eng. Mech 140 (5), 04014021, (2014) [CrossRef] [Google Scholar]
  9. D. Cekus, M. Miara, I. Zamorska, Damage identification of a beam with a variable cross-sectional area. Journal of Mathematics and Computational Mechanics 15 (4), 2332 (2016) [Google Scholar]
  10. S. Kukla, I. Zamojska, Frequency analysis of axially loaded stepped beams by Green’s function method. Journal of Sound and Vibration 300, 1034-1041 (2007) [CrossRef] [Google Scholar]
  11. S. Kukla, Dynamiczne funkcje Greena w analizie drgań własnych ciągłych i dyskretno-ciągłych układów mechanicznych. seria Monografie 64, Wydawnictwo Politechniki Częstochowskiej (1999) [Google Scholar]
  12. J. Mikusinski, R. Sikorski, Elementarna teoria dystrybucji. PWN, Warszawa (1964) [Google Scholar]
  13. J. Lee, L.A. Bergman, The vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method. Journal of Sound and Vibration 171, 617-640 (1994) [CrossRef] [Google Scholar]
  14. D. Cekuś, P. Warys: Identification of parameters of discrete-continuous models. AIP Conf. Proc. 1648, 850055 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.