Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 05021
Number of page(s) 7
Section Experimental mechanics, identification and validation
Published online 14 March 2018
  1. G. Fargione et al., Rapid determination of the fatigue curve by the thermographic method. International journal of fatigue 24, 11-19 (2002) [Google Scholar]
  2. A. Puškár, R. Pohl, Dynamická pevnosť a únavová životnosť.(Bratislava, Alfa, 1987) [Google Scholar]
  3. F. Risitano, et al, Determination of the fatigue limit by semi static tests. Cassino, Italy, 13-15 Giungo, ISBN 978-88-9594-36-6 (2011) [Google Scholar]
  4. G. Rosa, A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Internationl journal of fatigue 22, 65-73 (1999) [Google Scholar]
  5. M. P. Luong, Nondestructive damage evaluation of reinforced concrete structure using infrared thermography. Society of photo-optical instrumentation engineers, Newport Beach, CA, USA, 98-107 (1995) [Google Scholar]
  6. G. Curte et al, Analisi tramite infrarosso termico della “temperatura limite” in prove di fatica. 14th AIAS Italian National Conference, Catania, Italy, [in Italian], 211–20 (1986) [Google Scholar]
  7. P. Bremod, P. Potet, Lock-in thermography: a tool to analyze and locate thermomechanical mechanisms in materials and structures. Proceedings of SPIE 4360, 560, (2001) [Google Scholar]
  8. A. Akai et al., Relationship between dissipated energy and fatigue limit for austenitic stainless steel. 15th International conference on experimental mechanics, Portugal, (2001) [Google Scholar]
  9. [Google Scholar]
  10. F. Novy, M. Cincala, P. Kopas, O. Bokuvka, Mechanisms of high-strength structural materials fatigue failure in ultra-wide life region. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 462 (1-2), 189-192 (2007) [CrossRef] [Google Scholar]
  11. G. Nicoletto, O. Bokuvka, L. Collini, P. Kopas, Fatigue resistance in a very high-cycle regime. Transaction of FAMENA 29 (1), 9-16 (2005) [Google Scholar]
  12. M. Zmindak, P. Pastorek, Finite element analysis of cohesion between reinforced concrete beam and polymer lamella reinforced by carbon fibers. Procedia engineering 177, 582-589 (2017) [Google Scholar]
  13. P. Kopas, L. Jakubovičová, M. Vaško, M. Handrik, Fatigue Resistance of Reinforcing Steel Bars. Procedia Engineering 136, 193–197 (2016) [CrossRef] [Google Scholar]
  14. M. Handrik, P. Kopas, V. Baniari, M. Vaško, M. Sága, Analysis of stress and strain of fatigue specimens localised in the cross-sectional area of the gauge section testing on bi-axial fatigue machine loaded in the high-cycle fatigue region. Procedia Engineering 177, 516-519 (2017) [CrossRef] [Google Scholar]
  15. B. Strnadel, P. Ferfecki, P. Židlík, Statistical characteristics of fracture surfaces in X70 steel DWTT samples. Engineering Fracture Mechanics 112, 1-13 (2013) [CrossRef] [Google Scholar]
  16. J. Xiong, P. Guo, Y. Cai, B. Strnadel, J. Brumek, Y. He, H. Gu, Structural, magnetic and nanomechanical properties in Ni-doped AlN films. Journal of Alloys and Compounds Volume 606, 55-60 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.