Open Access
MATEC Web Conf.
Volume 153, 2018
The 4th International Conference on Mechatronics and Mechanical Engineering (ICMME 2017)
Article Number 01007
Number of page(s) 4
Section Novel Materials and Properties
Published online 26 February 2018
  1. Udayraj, et al., Heat and mass transfer through thermal protective clothing – A review. International Journal of Thermal Sciences, 2016. 106: p. 32-56. [CrossRef] [Google Scholar]
  2. Jiang, X., D. Mira, and D.L. Cluff, The combustion mitigation of methane as a non-CO2 greenhouse gas. Progress in Energy and Combustion Science, 2016. [Google Scholar]
  3. Arya, P.K., et al., DME blended LPG as a cooking fuel option for Indian household: A review. Renewable & Sustainable Energy Reviews, 2016. 53: p. 1591-1601. [CrossRef] [Google Scholar]
  4. Daneshvar, H., R. Prinja, and N.P. Kherani, Thermophotovoltaics: Fundamentals, challenges and prospects. Applied Energy, 2015. 159: p. 560-575. [CrossRef] [Google Scholar]
  5. Al-Abdeli, Y.M. and A.R. Masri, Review of laboratory swirl burners and experiments for model validation. Experimental Thermal and Fluid Science, 2015. 69: p. 178-196. [CrossRef] [Google Scholar]
  6. Zanganeh, J., B. Moghtaderi, and H. Ishida, Combustion and flame spread on fuel-soaked porous solids. Progress in Energy and Combustion Science, 2013. 39(4): p. 320-339. [CrossRef] [Google Scholar]
  7. Mujeebu, M.A., et al., Combustion in porous media and its applications--a comprehensive survey. J Environ Manage, 2009. 90(8): p. 2287-312. [CrossRef] [Google Scholar]
  8. Mujeebu, M.A., et al., Applications of porous media combustion technology - A review. Applied Energy, 2009. 86(9): p. 1365-1375. [CrossRef] [Google Scholar]
  9. Mujeebu, M.A., et al., A review of investigations on liquid fuel combustion in porous inert media. Progress in Energy and Combustion Science, 2009. 35(2): p. 216-230. [CrossRef] [Google Scholar]
  10. Zuo, W., et al., Numerical investigations on combustion characteristics of H 2 /air premixed combustion in a micro elliptical tube combustor. Energy, 2017. 126: p. 1-12. [CrossRef] [Google Scholar]
  11. Panigrahy, S., et al., Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner. Energy, 2016. 95: p. 404-414. [CrossRef] [Google Scholar]
  12. Mustafa, K.F., et al., Comparative assessment of a porous burner using vegetable cooking oil–kerosene fuel blends for thermoelectric and thermophotovoltaic power generation. Fuel, 2016. 180: p. 137-147. [CrossRef] [Google Scholar]
  13. Ismail, A.K., et al., Application of porous medium burner with micro cogeneration system. Energy, 2013. 50: p. 131-142. [CrossRef] [Google Scholar]
  14. Janvekar, A.A., et al., Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner. Energy, 2017. 122: p. 103-110. [CrossRef] [Google Scholar]
  15. Janvekar, A.A., et al. Assessment of porous media burner for surface/submerged flame during porous media combustion. in AIP Conference Proceedings. 2017. AIP Publishing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.