Open Access
Issue
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
Article Number 02004
Number of page(s) 5
Section Mechanical System Modeling and Analysis
DOI https://doi.org/10.1051/matecconf/201824902004
Published online 10 December 2018
  1. Jiang X, Cripps R J. A method of testing position independent geometric errors in rotary axes of a fiveaxis machine tool using a double ball bar[J]. International Journal of Machine Tools & Manufacture, 2015, 89:151-158. [CrossRef] [Google Scholar]
  2. Uddin M S, Ibaraki S, Matsubara A, et al. Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors[J]. Precision Engineering, 2009, 33(2):194-201. [CrossRef] [Google Scholar]
  3. He Z, Fu J, Zhang L, et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool[J]. International Journal of Machine Tools & Manufacture, 2015, 88:1-8. [CrossRef] [Google Scholar]
  4. Xiang S, Altintas Y. Modeling and compensation of volumetric errors for five-axis machine tools[J]. International Journal of Machine Tools & Manufacture, 2016, 101:65-78. [CrossRef] [Google Scholar]
  5. Ibaraki S, Oyama C, Otsubo H. Construction of an error map of rotary axes on a five-axis machining center by static R-test[J]. International Journal of Machine Tools & Manufacture, 2011, 51(3):190-200. [CrossRef] [Google Scholar]
  6. Zhu S, Ding G, Qin S, et al. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2012, 52(1):24-29. [CrossRef] [Google Scholar]
  7. Bringmann B, Knapp W. Machine tool calibration: Geometric test uncertainty depends on machine tool performance[J]. Precision Engineering, 2009, 33(4):524-529. [CrossRef] [Google Scholar]
  8. Los A, Mayer J R R. Application of the adaptive Monte Carlo method in a five-axis machine tool calibration uncertainty estimation including the thermal behavior ☆[J]. Precision Engineering, 2018. [Google Scholar]
  9. Bitar-Nehme E, Mayer J R R. Thermal volumetric effects under axes cycling using an invar R-test device and reference length[J]. International Journal of Machine Tools & Manufacture, 2016, 105:14-22. [CrossRef] [Google Scholar]
  10. Ding W, Zhu X, Huang X. Effect of servo and geometric errors of tilting-rotary tables on volumetric errors in five-axis machine tools[J]. International Journal of Machine Tools & Manufacture, 2016, 104:37-44. [CrossRef] [Google Scholar]
  11. Miller J E, Longstaff A P, Parkinson S, et al. Improved Machine Tool Linear Axis Calibration Through Continuous Motion Data Capture[J]. Precision Engineering, 2016, 47:249-260. [CrossRef] [Google Scholar]
  12. ISO 230-4. Test code for machine tools. Circular tests for numerically controlled machine tools. BSI Standards Publication; 2005. [Google Scholar]
  13. Shi S, Jing L, Wang X, et al. Analysis of the transient backlash error in CNC machine tools with closed loops[J]. International Journal of Machine Tools & Manufacture, 2015, 93(page:49):49-60. [CrossRef] [Google Scholar]
  14. Kato N, Sato R, Tsutsumi M. Analysis of circular trajectory equivalent to cone-frustum milling in fiveaxis machining centers using motion simulator[J]. International Journal of Machine Tools & Manufacture, 2013, 64(4):1-11. [CrossRef] [Google Scholar]
  15. Florussen G H J, Spaan H A M. Dynamic R-Test for Rotary Tables on 5-Axes Machine Tools[J]. Procedia Cirp, 2012, 1:536-539. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.