Open Access
MATEC Web Conf.
Volume 144, 2018
International Conference on Research in Mechanical Engineering Sciences (RiMES 2017)
Article Number 01003
Number of page(s) 12
Section Machine Design
Published online 09 January 2018
  1. Kung SW, Dunlop KB, Ballinger RS. “Complex Eigenvalue analysis for reducing low frequency brake squeal”. Technical report 2000 – 01 – 0444, Warrendale (PA); SAE (2000) [Google Scholar]
  2. Dunlop KB, Richle MA, Longhouse RE. “An investigative overview of automotive disc brake noise”, SAE paper (1999). [Google Scholar]
  3. Mario TrichesJunior, Samir N.Y.Gerges, Roberto Jordan, “Analysis of brake squeal noise using the finite element method: A parametric study”. Applied Acoustics Vol.69, pp.147 –162(2008) [CrossRef] [Google Scholar]
  4. Andreas Wagner, Gottfried Spelsberg – Korspeter, Peter Hagedorn, “Structural optimisation of an asymmetric automotive brake disc with cooling channels to avoid squeal”, Journal of Sound and Vibration, pp.1 – 11,(2013) [Google Scholar]
  5. R. Sedaghati, “Benchmark case studies in structural design optimisation using the force method”, International journal of solids and structures Issue 42, pp.5848 – 5871,(2005) [CrossRef] [Google Scholar]
  6. Y. D. Kwon, S. B. Kwon, S. B. Jin, J. Y. Kim. “Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimisation problems”. Computers and structures Issue 81,pp.1715 – 1725,(2003) [CrossRef] [Google Scholar]
  7. N. Ali, K. Behdinan, Z. Fawaz. “Applicability and viability of a GA based finite element analysis architecture for structural design optimisation”. Computers and structures Issue 81, pp.2259 – 2271,(2003) [CrossRef] [Google Scholar]
  8. Sherif H. “Investigation on effect of surface topography of pad / disc assembly on squeal generation”. Wear, Issue 257 (7 – 8), (2004), pp.687 – 695 [CrossRef] [Google Scholar]
  9. H. Hetzler, K. Willner, “On the influence of contact tribology on brake squeal”, Tribology International, Vol.11, pp.237 – 246, (2011) [Google Scholar]
  10. A. Akay, O. Giannini, F. Massi, A. Sestieri, “Disc brake squeal characterization through simplified test rigs”, Mechanical systems and signal processing, Vol.16, pp.2590 – 2607, (2009) [CrossRef] [Google Scholar]
  11. AliBelhocine, MostefaBouchetara, “Thermomechanicalmodelling of dry contacts in automotive disc brake”, International journal of Thermal Sciences Vol.60, pp.161 – 170, (2012) [CrossRef] [Google Scholar]
  12. Thomas J. Mackin et al, “Thermal cracking in disc brakes”, Engineering Failure Analysis, Issue 9, pp.63 – 76, (2002) [CrossRef] [Google Scholar]
  13. H. S. Qi, A. J. Day, “Investigation of disc / pad interface temperatures in friction braking”, Wear Issue 262, pp.505 – 513, (2007) [Google Scholar]
  14. H. S. Qi, A. J. Day, K. H. Kuan, G. Rosala. “A contribution towards understanding brake interface temperatures”. In: proceedings of the international conference ‘braking 2004 – vehicle braking and chassis control; Leeds, UK, 7 – 9 July, (2004) [Google Scholar]
  15. T. Valvano, K. Lee. “An analytical method to predict thermal distortion of a brake rotor”. Society of Automotive Engineers, Inc, 2000 – 01 – 0445,(2000) [Google Scholar]
  16. P. J. Blau, J. C. Mclaughlin, Tribol. Int 36,pp.709 – 715,(2003) [CrossRef] [Google Scholar]
  17. J. Bijwe, Nidhi, N. Majumdar, B. K. Satapathy, “Influence of modified phenolic resins on the fade and recovery of friction materials”, Wear, Issue 259, pp.1068 – 1078, (2005) [CrossRef] [Google Scholar]
  18. H. Smales, “Friction materials – black art or Science?” J.Automob.Eng. Issue 209, pp.151 – 157,(1995) [CrossRef] [Google Scholar]
  19. Mukesh Kumar, Jayashree Bijwe, “Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient – temperature sensitivity in brake materials”, Wear, Vol.269, pp.838 – 846, (2010), [CrossRef] [Google Scholar]
  20. “Brake lining quality control procedure”, SAE J661a, in: SAE Handbook, SAE, Detroit, MI, pp.31 – 55, (1978) [Google Scholar]
  21. “Replacement brake lining assemblies”, E.C.E Regulation no. – 90 INTEREUROPE Regulation ltd, UN, (1993) [Google Scholar]
  22. U. S. Hong, S. L. Jung, K. H. Cho, M. H. Cho, S. J. Kim, H. Jang. “Wear mechanism of multipurpose friction materials with different phenolic resin matrices”, Wear, Issue 266 (7 – 8), pp.739 – 774, (2009) [CrossRef] [Google Scholar]
  23. Rukiye Ertan, Nurettin Yavuz, “An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials”, Wear, Issue 268, pp.1524 – 1532, (2010) [CrossRef] [Google Scholar]
  24. Osman TahaSen, Jason T. Dreyer, Rajendra Singh, “Low frequency dynamics of a translating friction element in the presence of frictional guides, as motivated by a brake vibration problem”, Journal of Sound and Vibration, Issue 332, pp.5766 – 5788. (2013) [Google Scholar]
  25. S. Lignon, J-J. Sinou, L. Jezequel, “Stability analysis and μ - synthesis control of brake systems”, Journal of Sound and Vibration, Issue 298, pp.1073 – 1087, (2006) [CrossRef] [Google Scholar]
  26. Der – Ming Ma, Jaw – KuenShiau: The design of Eddy current magnet brakes. Transactions of the Canadian Society for Mechanical Engineering”, Vol.35, No.1, (2011). [Google Scholar]
  27. Marc T. Thompson: Practical Issues in the use of NdFeB Permanent Magnets in Maglev, Motors, Bearings and Eddy Current Brakes, Proceedings of IEEE, Vol.97, Issue 11, pp.1758 – 1767, (2009) [CrossRef] [Google Scholar]
  28. Schykowski, Jennifer: Eddy – current Braking: A long road to success. Railway Gazette, DVV media UK Ltd.(2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.