Open Access
Issue
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 02014
Number of page(s) 9
Section Sustainable Concrete Technology
DOI https://doi.org/10.1051/matecconf/201712002014
Published online 09 August 2017
  1. A. Fernandez-Jimenez, A. Palomo, Composition and microstructure of alkali activated fly ash binder: effect of the activator, Cem. Concr. Res. 35, 1984–1992 (2005). [Google Scholar]
  2. G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, The mechanical properties of fly ash-based geoploymer concrete with alkaline activators, Constr. Build. Mater. 47, 409–18 (2013). [Google Scholar]
  3. A Palomo, M.W Grutzeck, M.T Blanco, Alkali-activated fly ashes a cement for the future, Cem Concr Res 29, 1323–9 (1999). [Google Scholar]
  4. Z Xie, X. Yunping, Hardening mechanisms of an alkaline-activated class F fly ash, Cem. Concr. Res. 31, 1245–9 (2001). [CrossRef] [Google Scholar]
  5. P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. Van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf. A. 269, 47–58 (2005). [Google Scholar]
  6. M. Komljenovi, Z. Bascarevic, V. Bradic, Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J. Hazard. Mater. 181, 35–42 (2010). [CrossRef] [Google Scholar]
  7. D. Hardjito, B.V. Rangan, Development and Properties of Low-Calcium Fly Ash based Geopolymer Concrete. Australia Curtin University of Technology, Perth, p.48, (2005). [Google Scholar]
  8. H.Y. Leong, D. E.L. Ong, J.G. Sanjayan, A. Nazari, The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer Constr. Build. Mater. 106, 500–511 (2016). [CrossRef] [Google Scholar]
  9. M. Criado, A. Fernandez-Jimenez, A.G de la Torre, M.A.G. Aranda, A. Palomo, An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash, Cem. Concr. Res. 37, 671–679 (2007). [CrossRef] [Google Scholar]
  10. R. Fletcher, K. MacKenzie, C. Nicholson, S. Shimada, The composition range of aluminosilicate geopolymers, J. Eur. Ceram. Soc. 25, 1471–77 (2005). [CrossRef] [Google Scholar]
  11. M Rowles, B O’Connor, Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite, J Mater. Chem. 13, 1161–65 (2003). [CrossRef] [Google Scholar]
  12. A. Ferna´ndez-Jime´nez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Micropor Mesopor Mater. 91, 111–9 (2006). [CrossRef] [Google Scholar]
  13. A. Palomo, S. Alonso, A. Fernández-Jiménez, Alkaline activation of fly ashes: NMR study of the reaction products, J. Am. Ceram. Soc. 87, 1141–45 (2004). [CrossRef] [Google Scholar]
  14. P. Sukmak, S. Horpibulsuk, S.L. Shen, P. Chindaprasirt, C. Suksiripattanapong, Factors influencing strength development in clay-fly ash geopolymer, Constr. Build. Mater. 47, 1125–36 (2013). [CrossRef] [Google Scholar]
  15. M. Bing-hui, H. Zhu, C. Xue-min, H. Yan, G. Si-yu, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Appl. Clay Sci. 99, 144–148 (2014). [Google Scholar]
  16. Muhammad Talha Junaid, Amar Khennane, Obada Kayali, Arezki Sadaoui, Donald Picard, Mario Fafard, Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures, Cem. Concr. Res. 60, 24–29 (2014) [Google Scholar]
  17. William D.A. Rickard, Jadambaa Temuujin, Arie van Riessen, Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition, Journal of Non-Crystalline Solids 358, 1830–39 (2012). [CrossRef] [Google Scholar]
  18. A Fernández-Jiménez, A. Palomo, Characterization of fly ashes. Potential reactivity as alkaline cements, Fuel 82, 2259–65 (2003). [Google Scholar]
  19. A Fernández-Jiménez, I Garcı´a-Lodeiro, A Palomo, Durability of alkali-activated fly ash cementitious materials, J Mater Sci. 42, 3055–3065 (2007). [Google Scholar]
  20. M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description, Fuel 89, 3185–3192 (2010). [Google Scholar]
  21. M. Talha Junaid, Obada Kayali, Amar Khennane, Jarvis Black, A mix design procedure for low calcium alkali activated fly ash-based concretes, Constr. Build. Mater. 79, 301–310(2015). [Google Scholar]
  22. Bureau of Indian Standards, Pulverized Fuel Ash-Specification, IS 3812-part 1:2003, Manak bhavan, New Delhi. [Google Scholar]
  23. ASTM C 618, Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. [Google Scholar]
  24. ICSD, Inorganic Crystal Structure Database. 2013, Fachinformationszentrum: Karlsruhe, Germany. [Google Scholar]
  25. G.V.P. Bhagath Singh, K.V.L. Subramaniam, Quantitative XRD Analysis of Binary Blends of Siliceous Fly ash and Hydrated Cement, J. Mater. Civ. Eng. 28, 04016042 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.