Open Access
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
Article Number 03003
Number of page(s) 7
Section Chapter 3: Aerospace
Published online 10 July 2017
  1. R.A. Kroeger, H.D. Gruschka, T.C. Helvey, Air Force Flight Dynamics Laboratory Technical Report Low speed aerodynamics for ultra-quiet flight., 71-75 (1971). [Google Scholar]
  2. G.M. Lilley, A study of the silent flight of the owl. AIAA Paper, 98-2340 (1998). [Google Scholar]
  3. G.M. Lilley, The Prediction of Airframe Noise and Comparison with Experiment. Journal of Sound and Vibration, 239(4), 849–859 (2001). [CrossRef] [Google Scholar]
  4. D.P. Lockard, G.M. Lilley, The Airframe Noise Reduction Chanllenge. NASA/TM-2004-213013 (2004). [Google Scholar]
  5. R.R. Graham, The silent flight of owls. J. R. Aeronaut., 38, 837–843 (1934). [CrossRef] [Google Scholar]
  6. M.S. Howe, Aerodynamic noise of a serrated trailing edge. J. Fluids and Structures, 5, 33–45 (1991). [CrossRef] [Google Scholar]
  7. M.S. Howe, On the added mass of a perforated shell, with application to the generation of aerodynamic sound by a perforated trailing edge. Proc. R. Soc. Lond. A, 365, 209–233 (1979). [CrossRef] [Google Scholar]
  8. S. Oerlemans, M. Fisher, T. Maeder, K. Kogler, Reduction of wind turbine noise using optimized airfoils and trailing edge serrations. AIAA J., 47(6):1470–1481 (2009). [CrossRef] [Google Scholar]
  9. M. Herr, New Results in Numerical and Experimental Fluid Mechanics V: Experimental Study on Noise Reduction through Trailing Edge Brushes, Springer, Berlin Heidelberg, 365–372 (2006). [Google Scholar]
  10. M. Herr, W. Dobrzynski, Experimental investigations in low-noise trailing-edge design. AIAA J., 43(6), 1167–1175 (2005). [CrossRef] [Google Scholar]
  11. M. Herr, On the design of silent trailing edges. New Res. in Num. and Exp. Fluid Mech. VI, NNFM 96, 96, 430–437 (2007). [CrossRef] [Google Scholar]
  12. T. Geyer, E. Sarradj, C. Fritzsche, Porous airfoils: Noise reduction and boundary layer effects. AIAA Paper, 2009-3392 (2009). [Google Scholar]
  13. T. Geyer, E. Sarradj, C. Fritzsche, Measurement of the noise generation at the trailing edge of porous airfoils. Exp. in Fluids, 48, 291–308 (2010). [CrossRef] [Google Scholar]
  14. T.S. Liu, K. Kuykendoll, R. Rhew, S. Jones, Avian wing geometry and kinematics, AIAA J., 44, 954–963 (2006). [CrossRef] [Google Scholar]
  15. S. Klan, T. Bachmann, M. Klaas, H. Wagner, W. Schroder, Experimental analysis of the flow field over a novel owl based airfoil. Exp. in Fluids, 46, 975–989 (2009). [CrossRef] [Google Scholar]
  16. R.A. Kroeger, H.D. Gruschka, T.C. Helvey, Low speed aerodynamics for ultra-quiet flight. Air Force Flight Dynamics Laboratory Technical Report, 71-75 (1971). [Google Scholar]
  17. C. Ge, Z. Zhang, P. Liang, C. Zhang, L. Ren, Prediction and control of trailing edge noise based on bionic airfoil. SCIENCE CHINA Technological Sciences E, 57(7), 1462–1470 (2014). [CrossRef] [Google Scholar]
  18. Burgmann, S., Dannemann, J., Schroder W. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. in Fluids, 44(4), 609–622 (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.