Open Access
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
Article Number 01007
Number of page(s) 9
Section Chapter 1: Mechanical
Published online 10 July 2017
  1. Dalamagkidis, K., K. Valavanis, and L. Piegl, On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences, 2008. 44(7): p. 503-519. [Google Scholar]
  2. Wild, G., J. Murray, and G. Baxter, Exploring drone accidents and incidents to help prevent potential air disasters. Aerospace, 2016. 3(3): p. 1-11. [CrossRef] [Google Scholar]
  3. Scarselli, G., L. Lecce, and F. Nicolosi, DEVELOPMENT OF A MALE TURBO-PROP UNMANNED AERIAL VEHICLE FOR CIVIL APPLICATION. Aerotecnica Missili & Spazio, 2016. 86(1): p. 22-35. [Google Scholar]
  4. Cestino, E., Design of solar high altitude long endurance aircraft for multi payload & operations. Aerospace science and technology, 2006. 10(6): p. 541-550. [CrossRef] [Google Scholar]
  5. Nickol, C.L., et al., High altitude long endurance air vehicle analysis of alternatives and technology requirements development. AIAA Paper, 2007. 1050: p. 2007. [Google Scholar]
  6. Roaskam, J., Airplane Flight Dynamics and Automatic Flight Controls. Vol. Part1. 2001: DARcoperation, USA. [Google Scholar]
  7. Petterson, K., CFD analysis of the low-speed aerodynamic characteristics of a UCAV. AIAA Paper, 2006. 1259: p. 2006. [Google Scholar]
  8. USAF Stability and Control Datcom. Vol. 1. 1999: McDonnell Douglas Astronautics Company, St. Louis Division, St Louis, Missouri 63166. [Google Scholar]
  9. Roskam, D.J., Airplane Design Vol 1-7. Roskam Aviation and Engineering Corporation. 1985 [Google Scholar]
  10. Tischler, M.B. and R.K. Remple, Aircraft and rotorcraft system identification. AIAA education series, 2006. [Google Scholar]
  11. Wickenheiser, A.M. and E. Garcia, Optimization of perching maneuvers through vehicle morphing. Journal of Guidance, Control, and Dynamics, 2008. 31(4): p. 815-823. [CrossRef] [Google Scholar]
  12. Jung, D. and P. Tsiotras, Modeling and hardware-in-the-loop simulation for a small unmanned aerial vehicle. AIAA Infotech at Aerospace, AIAA, 2007: p. 07-2763. [Google Scholar]
  13. Buning, P.G., R.J. Gomez, and W.I. Scallion, CFD approaches for simulation of wing-body stage separation. AIAA Paper, 2004. 4838: p. 2004. [Google Scholar]
  14. Maqsood, A. and T. Hiong Go, Longitudinal flight dynamic analysis of an agile UAV. Aircraft Engineering and Aerospace Technology, 2010. 82(5): p. 288-295. [CrossRef] [Google Scholar]
  15. Lagarias, J.C., et al., Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal on optimization, 1998. 9(1): p. 112-147. [Google Scholar]
  16. Li, H., X.-G. Jing, and L.-M. Xu, The Simulation of 6-DOF Motion of Launch Vehicle Based on Matlab/Simulink [J]. Journal of Astronautics, 2005. 5: p. 016. [Google Scholar]
  17. Hespanha, J.P., LQG/LQR controller design. Undergraduate Lecture Notes, University of California, Santa Barbara, California, USA, 2007. [Google Scholar]
  18. Rivera, D.E., M. Morari, and S. Skogestad, Internal model control: PID controller design. Industrial & engineering chemistry process design and development, 1986. 25(1): p. 252-265. [Google Scholar]
  19. Ramasamy, M. and S. Sundaramoorthy, PID controller tuning for desired closed-loop responses for SISO systems using impulse response. Computers & Chemical Engineering, 2008. 32(8): p. 1773-1788. [CrossRef] [Google Scholar]
  20. Vilanova, R. and A. Visioli, PID control in the third millennium. 2012: Springer. [CrossRef] [Google Scholar]
  21. Hajiyev, C. and S.Y. Vural, LQR controller with Kalman estimator applied to UAV longitudinal dynamics. Positioning, 2013. 4(01): p. 36. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.