Issue |
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 6 | |
Section | Chapter 1: Mechanical | |
DOI | https://doi.org/10.1051/matecconf/201711401002 | |
Published online | 10 July 2017 |
Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles
College of Aeronautic Science and Engineering, National University of Defense Technology, 410073, Changsha, P.R. China
1 Corresponding author: xiaoyanzi905@qq.com
A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP), is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.