Issue |
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 9 | |
Section | Chapter 1: Mechanical | |
DOI | https://doi.org/10.1051/matecconf/201711401007 | |
Published online | 10 July 2017 |
Dynamic Modeling & Stability Analysis of a Generic UAV in Glide Phase
1 Research Center for Modeling and Simulation, National University of Sciences and Technology, H-12 Campus, Islamabad, Pakistan
2 College of Aeronautical Engineering (CAE), National University of Sciences & Technology, Risalpur, Pakistan
a Corresponding author: imranmir56@yahoomail.com
In this paper, we present dynamic modelling and stability analysis of a generic UAV in the glide phase under engine failure condition. When such extreme phenomena occurs, the most desirable requirement is to survive that stage by keeping the vehicle controllable by maintaining its orientation and to glide the vehicle towards the intended direction with maximum extended range. This study investigates the stability aspects of one such aerial vehicle under engine failure condition. In the proposed architecture, a six degree of freedom vehicle dynamic simulation model is implemented through a set of coupled non-linear differential equations. The aerodynamic forces and moments encountered by the UAV during various phases of the flight are ascertained through empirical / non-empirical techniques. Non-linear constrained optimization technique is employed to evaluate the steady state values of the optimized trajectory for the complete flight regime. Results from dynamical systems theory are applied to investigate local stability characteristics of UAV around the steady state. Complete set of dynamic modes of UAV throughout the glide phase are evaluated and mode content in each of the motion variable is determined using modal decomposition technique. The dynamic characteristics of the open-loop configuration are assessed to generate adequate benchmark performance for closed-loop controller design
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.