Open Access
Issue
MATEC Web Conf.
Volume 105, 2017
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’16)
Article Number 00010
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/201710500010
Published online 14 April 2017
  1. B. Abou El Majd, J.A. Désidéri, and A. Habbal. Aerodynamic and structural optimization of a business-jet wingshape by a Nash game and an adapted split of variables. Mécanique & Industries 11.3-4 209–214, (2010). [CrossRef] [EDP Sciences] [Google Scholar]
  2. B. Abou El Majd. Optimisation de forme paramétrique: Stratégies hiérarchiques, adaptatives, et concourantes. Éditions universitaires européennes, (2015). [Google Scholar]
  3. R. Aboulaich, A. Habbal and N. Moussaid, Split of an optimization variable in game theory, Math. Model. Nat. Phenom(MMNP) 5, No. 7, 106–111, (2010) [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  4. R. Aboulaich, A. Habbal and N. Moussaid, Optimisation multicritère: une approche par partage des variables, 13, 80–87, (2010). [Google Scholar]
  5. R. Aboulaich, R. Ellaia, S. El moumen, A. Habbal, N. Moussaid. A new algorithm for approching Nash equilibrium and Kalai Smoridinsky solution, submitted to “Applied and Computational Mathematics an International Journal (ACMIJ)”. [Google Scholar]
  6. R. Aboulaich, R. Ellaia, S. El moumen. The Mean-Variance-CVaR model for portfolio optimization Modeling using a Multi-Objective Approach based on a hybrid method, Math. Model. Nat. Phenom, 7, 93–98, (2010). [Google Scholar]
  7. R. Aboulaich, R. Ellaia, S. El Moumen. A new hybrid method for solving global optimization problem, Applied Mathematics and Computation Volume 218, Issue 7, 3265–3276, (2011). [CrossRef] [Google Scholar]
  8. I. Das, J.E. Dennis. Normal Boundary Intersection, A New methode for Generating the Pareto Surface inNonlinear Multicreteria Optimization problems, SIAM J. Optimization, 3, 631–657, (1998). [CrossRef] [Google Scholar]
  9. J. A. Désidéri, R. Duvigneau, B. Abou El Majd, and Z. Tang.Algorithms for e_cient shape optimization in aerodynamics and coupled disciplines. In 42nd AAAF Congress on Applied Aerodynamics, March 2007, Sophia-Antipolis, France. [Google Scholar]
  10. M. Duran Toksarý. A heuristic approach to find the global optimum of function, Journal of Computational and Applied Mathematics 209 160–166, (2007). [CrossRef] [Google Scholar]
  11. S. Kirpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing, Science, New Series 220),671–680, (1983). [Google Scholar]
  12. H.M. Markowitz. Multivariate Stochastic Approximation using a Simultaneous Perturbation Gradient Approximation, 7, 77–91, (1952). [Google Scholar]
  13. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equations of state calculations by fast computing machines, J. Chem. Phys., 21(6), 1087–1091, (1953). [NASA ADS] [CrossRef] [Google Scholar]
  14. B. Raphael, I.F.C. Smith. A direct stochastic algorithm for global search, Applied Mathematics and Computation 146, 729–758, (2003). [Google Scholar]
  15. C.R. Reeves. Modern Heuristic Techniques for Combinatorial Problems, John Wiley and Sons, New York, NY, 1993. [Google Scholar]
  16. R.T. Rockafeller, S. Uryasev. Optimization of Conditional Value-at-Risk, Journal of Risk, 3, 21–42, (2000). [CrossRef] [Google Scholar]
  17. R.T. Rockafeller, S. Uryasev. Conditional Value-at-Risk for general loss distributions, Journal of Banking and Finance, 7, 1443–1471, (2002). [CrossRef] [Google Scholar]
  18. M. Smorodinsky, E. Kalai. Other Solution to Nash’s Bargaining Problem, Econometrica, Applied Mathematics and Computation, 3, 513–518, (1975). [Google Scholar]
  19. J.C. Spall. Multivariate Stochastic Approximation using a Simultaneous Perturbation Gradient Approximation, IEEE transactions on automatic control, 37 332–341, (1992). [CrossRef] [Google Scholar]
  20. S. Uryasev. Conditional Value-at-Risk: Optimization Algorithms and Applications, Financial Engineering News 14, 1–5, (2000). [Google Scholar]
  21. Q. Yuan, Z. He, H. Leng. A hybrid genetic algorithmfor a class of global optimization problems with box constraints, Applied Mathematics and Computation 197 (2008) 924–929 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.